(GR20D5001) Matrix Methods in Structural Analysis

I-M.Tech (Structural engineering) – I Semester (2021-22)

Dr. G.V.V.Satyanarayana

Professor

Department of Civil Engineering

Gokaraju Rangaraju Institute of Engineering and Technology,

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

Gokaraju Rangaraju Institute of Engineering and Technology Department of Civil Engineering Structural Analysis

Course File Check List

S.No.	Name of the Format	Page No.
1	Syllabus	
2	Time Table	
3	Program Educational Objectives	
4	Program Objectives	
5	Course Objectives	
6	Course Outcomes	
7	Students Roll List	
8	Guide lines to study the course books & references, course design & delivery	
9	Course Schedule	
10	Unit Plan/Course Plan	
11	Evaluation Strategy	
12	Assessment in relation to COB's and CO's	
13	Tutorial Sheets	
14	Assignment Sheets	
15	Rubric for course	
16	Mappings of CO's and PO's	
17	Model question papers	
18	Mid-I and Mid-II question papers	
19	Mid-I marks	
20	Mid-II marks	
21	Sample answer scripts and Assignments	
22	Course materials like Notes, PPT's, Videos, etc,.	

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING

Subject: Matrix Methods in Structural Analysis (GR20D5001) Class: M.Tech., I year -I sem.,

Name: Dr.G.V.V. SATYANARAYANA

S.No	Date`	Unit No	Session Duration	Topics	
1.	16-11-2021			Unit – I Introduction to Matrix methods of	
			1	Analysis - Introduction about Matrix Methods in	
				Structural analysis	
2.	17-11-2021		1	Determination of Static indeterminacy of structures	
3.	19-11-2021		1	Determination of Kinematic indeterminacy of	
			1	structures	
4.	19-11-2021		1	Determination of DOF of given structures	
5.	23-11-2021		1	Explain the co-ordinate system	
6.	24-11-2021		1	Structure idealization	
7.	26-11-2021		1	Differentiate & relation between Stiffness &	
		I	1	Flexibility Matrix methods	
8.	26-11-2021		1	Explain general equations for Flexibility & stiffness	
				matrix methods	
9.	13-11-2021		1	Derivation of displacement equations for truss	
			element		
10.	01-12-2021		1	Derivation of displacement equations for beam	
			elements		
11.	03-12-2021			Derivation of displacement equations of tensional	
				elements	
12.	03-12-2021			Discuss on element stiffness matrix	
13.	07-12-2021			Discuss on local and Global coordinates	
14.	08-12-2021		1	Unit- II Stiffness Matrix Assembly of Structures and its	
15.	10-12-2021		1	Local matrix and global matrix for load and displacement	
4.5	10 12 2021			vectors (Stiffness matrix in global coordinates)	
16.	10-12-2021		1	stiffness matrix approach and Applications to Simple	
		II		Problems method	
17.	14-12-2021		1	Evaluation of stiffness matrix using Direct Stiffness	
40	45 42 2021	_	method		
18.	15-12-2021		1	General procedure of assembly of stiffness matrices	
19.	17-12-2021	1	1	Discuss on boundary conditions	
20.	17-12-2021		1	Solutions of stiffness matrix equations	

21.	21-12-2021		1	Solutions of stiffness matrix equations
22.	22-12-2021		1	Assembling global stiffness matrices
23.	24-12-2021		1	Spring problems
24.	24-12-2021		1	Unit-III Introduction about Flexibility matrix method(Force Method) And application to indeterminate beams
25.	28-12-2021		1	Flexibility matrix approach to statically indeterminate beams
26.	29-12-2021		1	Methodology to calculate redundant forces at beam joints using flexibility matrix method
27.	31-12-2021		1	Methodology to calculate redundant forces at beam joints using flexibility matrix method
28.	31-12-2021		1	Analyze continuous beams by using flexibility matrix methods carrying with different loads
29.	04-01-2022	Ш	1	Analyze continuous beams by using flexibility matrix methods carrying with different loads and sinking supports
30.	54-01-2022		1	Analyze plane truss by using flexibility matrix methods carrying with different loads
31.	07-01-2022		1	Analyze plane truss by using flexibility matrix methods carrying with different loads
32.	07-01-2022		1	Analyze plane frame by using flexibility matrix methods carrying with different loads
33.	11-01-2022		1	Analyze plane frame by using flexibility matrix methods carrying with different loads
34.	12-01-2022		1	Solving old question papers in unit -3
35.	25-01-2022		1	Solving old question papers in unit -3
36.	28-01-2022		1	Unit-IV Introduction about Flexibility matrix method(Displacement Method) And application to indeterminate beams
37.	28-01-2022		1	Stiffiness matrix approach to kinematically indeterminate beams
38.	01-02-2022	IV	1	Methodology to calculate redundant forces at beam joints using stiffness matrix method
39.	02-02-2022	14	1	Methodology to calculate redundant forces at beam joints using stiffness matrix method
40.	04-02-2022		1	Analyze continuous beams by using stiffness matrix methods carrying with different loads

41.	04-02-2022			Analyze continuous beams by using stiffness matrix
			1	methods carrying with different loads and sinking
				supports
42.	08-02-2022		1	Analyze plane truss by using stiffness matrix
			1	methods carrying with different loads
43.	09-02-2022		1	Analyze plane truss by using stiffness matrix
			1	methods carrying with different loads
44.	11-02-2022		1	Analyze plane frame by using stiffness matrix
			1	methods carrying with different loads
45.	11-02-2022		1	Analyze plane frame by using stiffness matrix
			_	methods carrying with different loads
46.	15-02-2022		1	Unit-V Introduction about Special analysis
			_	procedures
47.	16-02-2022		1	Importance about special analysis procedures
48.	18-02-2022		1	Explain static condensation with suitable example
49.	18-02-2022		1	What is sub-structuring? And its importance in structural analysis
50.	22-02-2022		1	What is effect due to initial and thermal stress in structures?
51.	23-02-2022	\mathbf{v}	1	Introduction and Necessity of shear walls
52	25-02-2022		1	Importance of shear walls in structures and their
			1	location in structures
53.	25-02-2022		1	Structural behaviour of large frames with and without shear wall
54.	01-03-2022	-	1	Approximate methods of analysis of shear walls
55.	02-03-2022	1	1	Revision
56.	04-03-2022	1	1	Revision
57.	04-03-2022	1	1	Revision
58.	08-03-2022	1	1	Revision
59.	09-03-2022		1	Revision
60.	11-03-2022		1	Revision
61.	11-03-2022		1	Revision

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

GR 20 Regulations

M.Tech I Year I semester

MATRIX METHODS IN STRUCTURAL ANALYSIS (GR20D5001)

UNIT - I

Introduction to matrix methods of analysis - Static indeterminacy and kinematic indeterminacy - degree of freedom - coordinate system - structure idealization stiffness and flexibility matrices - suitability element stiffness equations - elements flexibility equations - mixed force - displacement equations - for truss element, beam element and tensional element. Transformation of coordinates - element stiffness matrix - and load vector - local and global coordinates

UNIT - II

Stiffness Matrix Assembly of Structures and its Applications to Simple Problems: Direct Stiffness method, Matrix in Global Coordinates, Boundary Conditions, Solution of Stiffness Matrix Equations.

UNIT - III

Analysis of Beams, Plane Trusses, Plane Rigid Jointed frames using flexibility method

UNIT-IV

Analysis of plane truss - continuous beam - plane frame and grids by stiffness matrix methods.

UNIT - V

Special analysis procedures - Static condensation and sub structuring - initial and thermal stresses. Shear walls- Necessity - structural behaviour of large frames with and without shear walls - approximate methods of analysis of shear walls.

TEXT BOOKS:

- 1. William Weaver J.R and James M.Geve, Matrix Analysis of Frames structures, CBS publications, Delhi 2004.
- 2. Ashok.K.Jain, Advanced Structural Analysis, New Channel Brothers, 1996.
- 3. C.S.Reddy, Structural Analysis, 3rd edition, 2010.

REFERENCES:

- 1. Kanchi, Matrix Structural Analysis, 1995.
- 2. J.Meek, Matrix Methods of Structural Analysis, 3rd edition, 1980.
- 3. Ghali and Neyveli, Structural Analysis, 3rd edition, December, 1990.

Name of the college & Code : Gokaraju Rangaraju Institute of Engineering & Technology, 24

Name of the PG Program
Specialization
Academic Year & Semester
: M aster of Technology
: Structural Engineering
: 2021-22, I Semester

Time Table

w.e.f:15-11-2021

Room No: 4203

DAY/TIME	9:00AM- 10:00AM	10.00 AM- 11.00 AM	11.00 AM- 12.00 PM	12.00 PM- 1:00 PM	1.00 PM - 2.00 PM	2.00 PM - 3.00 PM	3.00 PM- 4.00 PM
MON						•	
TUE					MMSA		
WED		MMSA					
THU							
FRI	٨	MMSA			•		
SAT							

S.No.	Subject Code	Name of the Subject	Name of the Teacher	JNTUH Faculty ID
1	GR18D5164	Matrix Methods in Structural Analysis(MMSA) (Professional Core I)	Dr. G V V Satyanarayana	03150331-231935
2	GR18D5165	Advanced Solid Mechanics (Professional Core II)		
3	GR18D5166	Advanced Concrete Technology (Professional Elective-I)	Dr. K.Sriknath	7033-190525-163137
4	GR18D5169	Analytical and Numerical Methods for Structural Engineering (Program Elective II)	Mr.V.Naresh Kumar Varma	970115052-2111930
5	GR18D5012	Research Methodology and IPR (Core)	Dr.M ohammed Hussain	27150331-114004
6	GR18D5207	English for Research Paper Writing (Audit Course 1)		
7	GR18D5172	Structural Design Lab	Dr.Atulkumar Manchalwa	4647-190813-151855
8	GR18D5173	Concrete Technology Lab	Dr.V.S.reddy?Y.Kamal; Raju	970115052- 2111930/55150331- 104450

(Dr. G.V.V.Sa yanaraya na)

(Dr.V. Mallikarjuna Reddy)

M.Tech Coordinator

HOD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: MATRIX METHODS IN STRUCTURAL ANALYSIS

Course Code: GR20D5001

Program Educational Objective's

PEO 1:

Graduates of the program will equip with professional expertise on the theories, process, methods and techniques for building high-quality structures in a cost-effective manner.

PEO 2:

Graduates of the program will be able to design structural components using contempory software and professional tools with quality practices of international standards.

PEO 3:

Graduates of the program will be effective as both an individual contributor and a member of a development team with professional, ethical and social responsibilities.

PEO 4:

Graduates of the program will grow professionally through continuing education, training, research, and adapting to the rapidly changing technological trends globally in structural engineering.

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Finite Element Methods in Structural Engineering

Course Code: GR20D5001

Programme Outcomes

Graduates of the Civil Engineering programme will be able to

- **PO 1:** An ability to independently carry out research / investigation and development to solve practical problems
- **PO 2:** An ability to write and present a substantial technical report / document.
- **PO 3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's.
- PO 4: Assess the impact of professional engineering solutions in an environmental context along with societal, health, safety, legal, ethical and cultural issues and the need for sustainable development.
- **PO 5:** Possesses critical thinking skills and solves core, complex and multidisciplinary structural engineering problems.
- PO 6: Recognize the need for life-long learning to improve knowledge and competence.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE OBJECTIVES

${f A}$ cademic ${f Y}$	ear :	2021	1-22

Semester : I

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR20D5001

Name of the Faculty: Dr. GVV Satyanarayana Dept.: Civil Engineering

Designation: PROFESSOR

On completion of this Subject/Course the student shall be able to:

S.No	Objectives
1	To learn how to idealize statically and kinematically determinate and indeterminate Structures and their ill effects.
2.	To learn the difference between local and global co-ordinates systems and its role in preparation of stiffness matrix.
3	To understand the effective usage of flexibility matrix method in statically indeterminate structures.
4	To understand the effective usage of stiffness matrix method in kinematically indeterminate structures.
5	To understand about static condensation and sub structuring. To learn about shear walls and their role in multi storied structures.

Signature of HOD	Signature of faculty		
Date:	Date:		

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the objectives.

Academic Year

5

in multi storied constructions

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

COURSE OUTCOMES

: 2021-22

Semest	er : I						
Name	Name of the Program: M.Tech (Structural Engineering) Ye						
Course	/Subject: Matrix Methods in Structural Analysis	Course Code: GR20D5001					
Designa	of the Faculty: Dr.GVV Satyanarayana ation: PROFESSOR. pected outcomes of the Course/Subject are:	Dept.: Civil Engineering					
S.No	Outcomes						
1	Evaluate the static and kinematic indeterminacy and generate stiffnes	s and flexibility matrices.					
2	Analyse the skeleton structures using stiffness method under differen	t coordinate system.					
3	Use flexibility matrix method to analyse different structures.						
4	Use stiffness matrix method to analyse different structures.						

Signature of HOD	Signature of faculty
Date:	Date:

Analyse various types of structural members using special analysis procedures and shear walls

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the outcomes.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

M.Tech (Structural Engineering) I Year II Semester

Course/Subject: Matrix Methods in Structural Analysis

Course Code:

GR20D5001

		T 7	2021	
Λ Ω	amic	Year	71171	1 _ 7 7
ALAU		I Cai	202	-44

S.No	Student Name	Roll No
1	ATKAPURAM PRASHANTH	21241D2001
2	BANDI SRI RAM GOPAL	21241D2002
3	CHALLA MADHAVI	21241D2003
4	PAMMI DIVYA	21241D2004
5	DUMMA UMESH KUMAR	21241D2005
6	K LATHASREE	21241D2006
7	MARIYALA VAISHNAVI	21241D2007
8	MAVOORI PRANAV	21241D2008
9	MITTAPALLI NAGA ASHWINI	21241D2009
10	RAVULA VENKATA SURAJ REDDY	21241D2010
11	REPATI MOHAN BABU	21241D2011
12	CHERUKU SANDHYA	21241D2012
13	SHAIK FEROZ	21241D2013
14	S K SAI CHANDRA	21241D2014
15	THOTA HARSHAVARDHAN	21241D2015
16	VARIKUPPULA LALITHA	21241D2016
17	YAMBA RAMA GNANENDRA SAI	21241D2017
18	YENUMALA DEVESH GOUD	21241D2018
19	S PRASHANTH KUMAR	21241D2019
20	BAVANDLAPELLI THARUN TEJA	21241D2020
21	G NITISH KUMAR	21241D2021

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Year: I

Course Code: GR20D5001

GUIDELINES TO STUDY THE COURSE / SUBJECT

Academic Year	:	2021-22
Semester	:	I

Name of the Faculty: Dr.GVV Satyanarayana Dept.: Civil Engineering

Designation: PROFESSOR

Guidelines to study the Course/ Subject: Structural Analysis

Name of the Program: M.Tech (Structural Engineering)

Course/Subject: Matrix Methods in Structural Analysis

Course Design and Delivery System (CDD):

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to -

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Signature	of HOD	Signature	of faculty
Date:		Date:	

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

COURSE SCHEDULE

Academic Year : 202122

Semester : I

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural analysis Course Code: GR20D5001

Name of the Faculty: Dr.GVV Satyanarayana Dept.: Civil Engineering

Designation: PROFESSOR

The Schedule for the whole Course / Subject is:

		Duration	n (Date)	Total No.
S. No.	Description	From	То	Of
				Periods
1.	Unit – I Introduction to Matrix methods of	16-11-21	07-12-21	13
	Analysis			
2.	Unit- II Assembly of stiffness matrices	08-12-21	24-12-21	10
3.	Unit-III Introduction about Flexibility matrix	24-12-21	25-01-22	12
	method(Force Method) And application to			
	indeterminate beams			
4.	Unit-IV Introduction about stiffness matrix	28-01-22	11-02-22	10
	method(Displacement Method) And application			
	to indeterminate beams			
5.	Unit-V Special analysis procedures Introduction	15-02-22	01-03-22	09
	about special analysis procedures, static			
	condensation and sub structuring in structures			

Total No. of Instructional periods available for the course: 54 Hours / Periods

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2021-22

Semester : I UNIT NO.: I TO V

Name of the Program: M.Tech Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR20D5001

Name of the Faculty: Dr.GVV Satyanarayana Dept.: Civil Engineering

Designation: PROFESSOR

			No. of		Objectives &	References
Unit	T assess	Date	Periods	Topics / Sub-Topics	Outcomes	(Text Book, Journal)
No.	Lesson No.				Nos.	Page Nos.:to
	INO.					
				Unit – I Introduction to	1 & 1	Structural Analysis by
				Matrix methods of		S.S.Bhavikati ,
				Analysis - Introduction		Advanced Structural
1.	1.	16-11-2021	1	about Matrix Methods in		Analysis by
1				Structural analysis		Asohk.K.Jainn and
				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Structural analysis by
		.=			1.0.1	C.S.Reddy
		17-11-2021	1	Determination of Static	1 & 1	
	2.		_	indeterminacy of structures		
		19-11-2021	1	Determination of Kinematic	1 & 1	
	3.		-	indeterminacy of structures		
		19-11-2021	1	Determination of DOF of	1 & 1	
	4.			given structures		
		23-11-2021	1	Explain the co-ordinate	1 & 1	
	5.		1	system		
		24-11-2021	1	Structure idealization	1 & 1	
	6.		_			
		26-11-2021		Differentiate & relation	1 & 1	
	7.		1	between Stiffness &		
	/.			Flexibility Matrix methods		
		26-11-2021		Explain general equations	1 & 1	
	Q		1	for Flexibility & stiffness		
	0.			matrix methods		
	0	13-11-2021	4	Derivation of displacement	1 & 1	
	9		¹			
	10	01-12-2021	1	-	1 & 1	
	10		1			
	8. 9	13-11-2021	1 1 1	for Flexibility & stiffness	1 & 1	

11	03-12-2021		of displacement of tensional	1 & 1	
12	03-12-2021	Discuss of matrix	on element stiffness	1 & 1	
13	07-12-2021	Discuss of coordinat	on local and Global es	1 & 1	

	F	ı	NT C	T	01: .: 0	I D. C
			No. of	m : /a.m :	Objectives &	References
Unit	_		Periods	Topics / Sub-Topics	Outcomes	(Text Book,
No.	Lesson	Date			Nos.	Journal)
	No.	Bute				Page Nos.:to
				Unit- II Stiffness Matrix	2 & 2	Structural Analysis by
				Assembly of Structures and its		S.S.Bhavikati,
				•		Advanced Structural
2.	1.	08-12-2021	1			Analysis by
	1.					Asohk.K.Jainn and
						Structural analysis by
						C.S.Reddy
		10-12-2021		Local matrix and global matrix	2 & 2	
			1	for load and displacement		
	2.		1	vectors (Stiffness matrix in		
				global coordinates)		
		10-12-2021		stiffness matrix approach	2 & 2	
	2		1	and Applications to Simple		
	3.			Problems method		
		14-12-2021		Evaluation of stiffness	2 & 2	
		1112 2021	1	matrix using Direct Stiffness	2 00 2	
	4.		1	method		
		15-12-2021			2 & 2	
		15-12-2021		General procedure of	2 & 2	
	5.		1	assembly of stiffness		
				matrices		
		17-12-2021	1	Discuss on boundary	2 & 2	
	6.		1	conditions		
	7	17-12-2021	1	Solutions of stiffness matrix	2 & 2	
	7.		1	equations		
		21-12-2021	_	Solutions of stiffness matrix	2 & 2	
	8.		1	equations		
		22-12-2021		Assembling global stiffness	2 & 2	
	9.	22-12-2021	1	1	2 & 2	
	10	24.42.222		matrices	2 0 2	
	10.	24-12-2021	1	Spring problems	2 & 2	

			No. of		Objectives	References
Unit			Periods	Topics / Sub-Topics	&	(Text Book,
No.	Lesson	.	2 2 2 2 3 3 3	- Special Control Control	Outcomes	Journal)
	No.	Date			Nos.	Page Nos.:to
		24-12-2021		Unit-III Introduction about	3 & 3	Structural Analysis by
				Flexibility matrix		S.S.Bhavikati,
	1.			method(Force Method) And		Advanced Structural
3.	1.		1	application to indeterminate		Analysis by
				beams		Asohk.K.Jainn and
				ocans		Structural analysis by
						C.S.Reddy
		28-12-2021		Flexibility matrix approach	3 & 3	
	2.		1	to statically indeterminate		
				beams		
		29-12-2021		Methodology to calculate	3 & 3	
	3.		1	redundant forces at beam		
	3.		1	joints using flexibility matrix		
				method		
		31-12-2021		Methodology to calculate	3 & 3	
	4.		1	redundant forces at beam		
	4.		1	joints using flexibility matrix		
				method		
		31-12-2021		Analyze continuous beams by	3 & 3	
			1	using flexibility matrix		
	5.		1	methods carrying with		
				different loads		
		04-01-2022		Analyze continuous beams by	3 & 3	
				using flexibility matrix		
	6.		1	methods carrying with		
	0.			different loads and sinking		
				supports		
		54-01-2022		Analyze plane truss by using	3 & 3	
	7.		1	flexibility matrix methods		
	/.			carrying with different loads		
		07-01-2022		Analyze plane truss by using	3 & 3	
	8.		1	flexibility matrix methods		
				carrying with different loads		
		07-01-2022		Analyze plane frame by using	3 & 3	
	9.		1	flexibility matrix methods		
	7.			carrying with different loads		
		11-01-2022		Analyze plane frame by using	3 & 3	
	10.		1	flexibility matrix methods		
				carrying with different loads		
		12-01-2022	1	Solving old question papers	3 & 3	
	11.		1	in unit -3		
		25-01-2022	1	Solving old question papers	3 & 3	
	12.		1	in unit -3		
	-			-		

			No. of		Objectives	References
Unit	T	Date	Periods	Topics / Sub-Topics	&	(Text Book, Journal)
No.	Lesson				Outcomes	Page Nos.:to
	No.				Nos.	
4.		28-01-2022		Unit-IV Introduction about	4 & 4	Structural Analysis by
				Flexibility matrix		S.S.Bhavikati,
	1.		1	method(Displacement		Advanced Structural
			1	Method) And application to		Analysis by Asohk.K.Jainn and
				indeterminate beams		Structural analysis by
						C.S.Reddy
		28-01-2022		Stiffness matrix approach to	4 & 4	
	2		1	kinematically indeterminate		
	2.			beams		
		01-02-2022		Methodology to calculate	4 & 4	
	3.		1	redundant forces at beam		
	٦.		1	joints using stiffness matrix		
				method	1.0.7	
		02-02-2022		Methodology to calculate	4 & 4	
	4.		1	redundant forces at beam		
				joints using stiffness matrix		
		04.02.2022		method	1 0- 1	
		04-02-2022		Analyze continuous beams by	4 & 4	
	5.		1	using stiffness matrix		
				methods carrying with different loads		
		04-02-2022		Analyze continuous beams by	4 & 4	
		0- 02 2022		using stiffness matrix		
			1	methods carrying with		
	6.		_	different loads and sinking		
				supports		
		08-02-2022		Analyze plane truss by using	4 & 4	
	7.		1	stiffness matrix methods		
	/.			carrying with different loads		
		09-02-2022		Analyze plane truss by using	4 & 4	
	8.		1	stiffness matrix methods		
	0.			carrying with different loads		
		11-02-2022		Analyze plane frame by using	4 & 4	
	9.		1	stiffness matrix methods		
		44.65.555		carrying with different loads	4.0.4	
		11-02-2022	4	Analyze plane frame by using	4 & 4	
	10.		1	stiffness matrix methods		
				carrying with different loads		

			No. of		Objectives	References
Unit	Lagger	Date	Periods	Topics / Sub-Topics	&	(Text Book, Journal)
No.	Lesson				Outcomes	Page Nos.:to
	No.				Nos.	
5.		15-02-2022		Unit-V Introduction about		Structural Analysis by
				Special analysis procedures		S.S.Bhavikati ,
			1	Transfer of the second	5 & 5	Advanced Structural
	1.		1		3 & 3	Analysis by
	1.					Asohk.K.Jainn and
						Structural analysis by
						C.S.Reddy
	2.	16-02-2022	1	Importance about special	5 & 5	
	۷.			analysis procedures		
	3.	18-02-2022	1	Explain static condensation	5 & 5	
	3.			with suitable example		
		18-02-2022	1	What is sub-structuring? And	5.0.5	
	4.		1	its importance in structural	5 & 5	
				analysis		
		22-02-2022		What is effect due to initial	5 0 5	
	5.		1	and thermal stress in	5 & 5	
				structures?		
		23-02-2022	1	Introduction and Necessity	5 & 5	
	6			of shear walls		
		25-02-2022		Importance of shear walls in		
	7		1	structures and their location	5 & 5	
	•			in structures		
		25-02-2022		Structural behaviour of large		
	8		1	frames with and without	5 & 5	
	<u> </u>			shear wall		
		01-03-2022	1	Approximate methods of	5 & 5	
	9	01 03 2022	1	analysis of shear walls	3 & 3	
				analysis of shear wans		

Signature of HOD	Signature of facult
Signature of HOD	Signature of facult

Date: Date:

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.
2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED IN BOLD
3. MENTION THE CORRESPONDING COURSE OBJECTIVE AND OUT COME NUMBERS AGAINST EACH TOPIC.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

EVALUATION STRATEGY

Academic Year	: 2021-22	
Semester	: I	
Name of the Program:	M.Tech (Structural Engineering)	Year: I
Course/Subject: Matri	ix Methods in Structural analysis	Subject Code(GR20D5001
Name of the Faculty:	GVV Satyanarayana	Dept.: Civil Engineering
Designation : 1	PROFESSOR	
1. TARGET:		
A) Percentage for pass	:98%	
	1 st class with distinction - 60% 1 st class - 40%	
2. COURSE PLAN & C	CONTENT DELIVERY	
	intend to cover the contents: i.e., coverage of U ms, demonstration of models, model preparation,	
3. METHOD OF EVAL	LUATION	
3.1 Continuous A	ssessment Examinations (CAE-I, CAE-II)	
3.2 Assignments	/Seminars	
3.3 Project Revie	ew/ Comprehensive viva-voce	
3.4 Quiz		
3.5 Semester/End	d Examination	
3.6 ☐ Others		
4. List out any new topic(s	s) or any innovation you would like to introduce in tea	aching the subjects in this Semester.
Signature of HOD Date:		Signature of faculty Date:

GR20D5001 Matrix Methods in Structural Analysis	Course Outcomes						
Course Objectives	1	2	3	4	5		
1	X						
2		X					
3			X				
4				X			
5					X		

GR20D5001 Matrix Methods in Structural Analysis	Course Outcomes							
Assessment	1	2	3	4	5			
1	X							
2		X						
3			X					
4				X				
5					X			

GR20D5001 Matrix Methods in Structural Analysis	Course Objectives							
Assessment	1	2	3	4	5			
1	X							
2		X						
3			X					
4				X				
5					X			

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

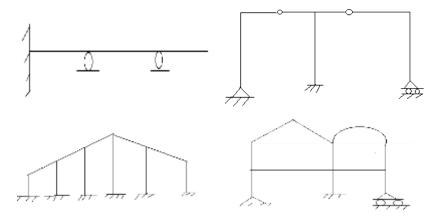
TUTORIAL SHEET - 1

Academic Year : 2021-22 Date: 07-12-2021

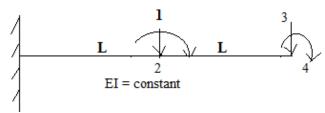
Semester : I

Name of the Program: M.Tech (Structural Engineering)

Year: I


Course/Subject: Matrix methods in Structural Analysis

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering


This Tutorial corresponds to Unit No. 1/Lesson Introduction to Matrix methods of Analysis (GR20D5001)

Q1. What is static and kinematic indeterminacies? Explain both indeterminacies with suitable examples.

Q2. Evaluate the static and kinematic indeterminacies of shown structures.

- Q3. What is structural idealization and explain with neat figure.
- Q4. Differentiate the flexibility matrix for the given co-ordinates.

- Q4. Derive the relationship between stiffness and flexibility matrices.
- Q5. Derive displacement equations for beam and truss elements.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 1, 1

Outcome Nos.: <u>1, 1</u>

Signature of HOD Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET - 2

Academic Year	: 2021-22	Date: 24-12-2021
Semester	: I	
Name of the Program: I	M.Tech (Structural Engineering)	Year: I
•	methods in Structural Analysis (GR20D5001)
Name of the Faculty: D	• •	Dept.: Civil Engineering
Designation : Pl	ROFESSOR	
This Tutorial correspond	ds to Unit No. 2/Lesson Assembly	of stiffness matrices
Q1. Explain the procedu	are in assembling stiffness.	
Q2. Write about transfor	rmation matrix and explain the terms	s local and global co-ordinates.
Q3. Explain direct stiffne		
Q4 Discuss on boundary		
Q5 Solutions of stiffness	<u>*</u>	or 6.11
Q6. Write a computer a	lgorithm to Analyse any structure w	ith suitable example.
_	ns / Problems / Exercises which you Outcomes to which these Questions	would like to give to the students and also / Problems / Exercises are related.
Objective Nos.: 2		
Outcome Nos.: $\underline{\underline{2}}$,		
_		
Signature of HOD		Signature of faculty
Date:		Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET - 3

Academic Year : 2021-22 Date: 25-01-2022

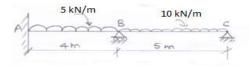
Semester : I

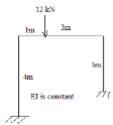
Name of the Program: M.Tech (Structural Engineering) Year: I Course/Subject: Matrix methods in Structural Analysis (GR20D5001)

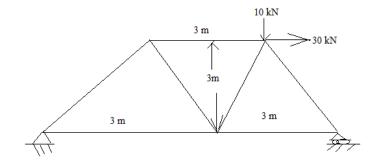
Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation : PROFESSOR

This Tutorial corresponds to Unit No. 3/Lesson Introduction about Flexibility matrix method(Force Method) And application to indeterminate beams


- Q1. Explain the stepwise procedure to analyze the statically indeterminate structures using Force (Flexibility) matrix and Displacement (Stiffness) Methods.
- Q2. Analyse the propped cantilever beam given below using Force ethod.


Q2. Determine the support moments and reactions of fixed beam using flexibility methods.


Q3. Analyze the continuous beam using flexibility matrix method as shown in figure. Let I $_{ab} = 1.5 \ I_{bc}$.

Q4. Analyse the portal frame as shown below using force method. Take EI as constant.

Q5. Analyse the truss as shown below using flexibility matrix method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 3

Outcome Nos.: 3

Signature of HOD Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

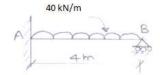
TUTORIAL SHEET - 4

Academic Year : 2021-22 Date: 11-02-2022

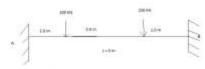
Semester : I

Name of the Program: M.Tech (Structural Engineering)

Year: I

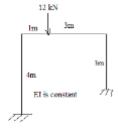

Course/Subject: Matrix methods in Structural Analysis (GR20D5001)

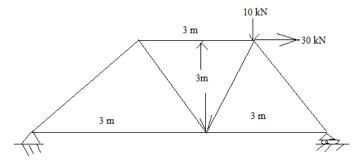
Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering


Designation : PROFESSOR

This Tutorial corresponds to Unit No. 4/Lesson Introduction about stiffness matrix method(Displacement Method)

- Q1. Explain the stepwise procedure to analyze the statically indeterminate structures using displacement or Stiffness matrix and Displacement (Stiffness) Methods.
- Q2. Analyse the propped cantilever beam given below using Displacement method.


Q2. Determine the support moments and reactions of fixed beam using stiffness matrix methods.


Q3. Analyze the continuous beam using flexibility stiffness method as shown in figure. Let I $_{ab} = 1.5 \ I_{bc}$.

Q4. Analyse the portal frame as shown below using force method. Take EI as constant.

Q5. Analyse the truss as shown below using stiffness matrix method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: <u>4</u> Outcome Nos.: <u>4</u>

Signature of HOD

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET - 5

Academic Year : 2021-22 Date:28-02-2022

Semester : I

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix methods in Structural Analysis (GR20D5001)

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation : PROFESSOR

This Tutorial corresponds to Unit No. 5/Lesson Special analysis procedures

- Q1. Describe the Importance about special analysis procedures using in structural analysis.
- Q2. What is static condensation and explain its importance
- Q3. Explain static condensation with suitable example
- Q4. What is sub-structuring and write Importance of sub structuring in structural analysis
- Q5. What is effect due to initial and thermal stress in structures?
- Q6. What are the uses of shear walls and their location in large structures?
- Q7. What are the varieties or shapes of shear walls?
- Q8. Describe the behaviour of shear walls in large frames with and without shear walls.
- Q9. Explain the different method in analysis of shear walls.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: $\underline{5}$ Outcome Nos.: $\underline{5}$

Signature of HOD Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 1

Academic Year	: 2021-22	Date: 07-12-2021						
Semester	: I							
Name of the Program: M	I.Tech (Structural Engineerin	g) Year: I						
Course/Subject: Matrix	Methods in Structural Ana	alysis (GR20D5001)						
Name of the Faculty: Dr.	G.V.V. Satyanarayana	Dept. Civil Engineering						
Designation :	PROFESSOR							
This Assignment corresp	onds to Unit No.1							
Q1. What is Static and ki for given structures.	nematic indeterminacy of st	tructures? Derive static and kinematic indeterminacy						
 Q2. Differentiate between static determinate and indeterminate structures. Q3. What is transformation matrix and its use? Q4. Deduce the relationship between flexibility and stiffness matrices. Q5. Derive displacement equations for truss and beam elements. Q6. Define the terms dof and redundants at supports. Q7. Differentiate local and global co-ordinates and how they are interconnected 								
mention the Objectives/O	outcomes to which these Que	ich you would like to give to the students and also estions / Problems / Exercises are related.						
Objective Nos.:								
Outcome Nos.:								
Signature of HOD		Signature of faculty						
Date:		Date:						

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 2

Academic Year : 2021-22	Date: 24-12-2021							
Semester : I								
Name of the Program: M.Tech (Structural Engineering) Civil	Year: I							
Course/Subject: Matrix Methods in Structural Analysis (GR20D500)	<u>1)</u>							
Name of the Faculty: Dr.G.V.V. Satyanarayana	Dept. Civil Engineering							
Designation : PROFESSOR								
This Assignment corresponds to <u>Unit No-2.</u>								
Q2. Explain the procedure to deduce a stiffness matrix using direct stiffness method. Q3. Derive stiffness matrix for any structure with assigned co-ordinates. Q4. What is Rank of matrix and evaluate the rank of matrix for the given matrix? Q5. What is semi band width and explain its importance in structural analysis? Q6. Write a computer alogarithm to deduce final forces in a truss member using stiffness matrix approach. Q7. How to assemble the stiffness matrices? Q8. Discuss on various boundary conditions used FEM.								
Please write the Questions / Problems / Exercises which you would like mention the Objectives/Outcomes to which these Questions / Problems	<u> </u>							
Objective Nos.: 2.								
Outcome Nos.: 2								
Signature of HOD	Signature of faculty							
Date:	Date:							

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 3

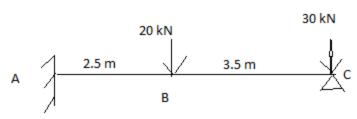
Academic Year : 2021-22 Date: 25-01-2022

Semester : I

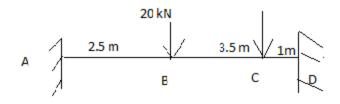
Name of the Program: M.Tech (Structural Engineering)

Year: I

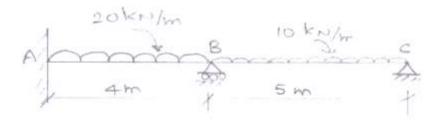
Course/Subject: Matrix Methods in Structural Analysis (GR20D5001)


Name of the Faculty: Dr.G.V.V. Satyanarayana Dept. Civil Engineering

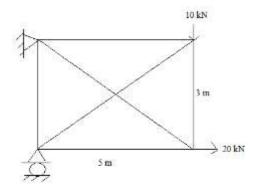
Designation : PROFESSOR


This Assignment corresponds to Unit No.3

Q1. Develop a flexibility matrix for the structure with assigned co-ordinates.


Q2. Analyse the propped cantilever beam using flexibility matrix method as shown below.

Q3. Determine the support moments and also draw SFD and BMD's of a fixed beam as shown in the figure below using force method.



Q3. Analyze the continuous beam as shown in figure below using flexibility method if the support C sinking 10 mm. Take $EI = 18000 \text{ kn-m}^2$.

Q4. Explain the stepwise procedure to analyze a portal frame in flexibilty matrix method.

Q5. Analyse the truss as shown below using force method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 3.		
Outcome Nos.: 3.		
Signature of HOD	Signature	of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 4

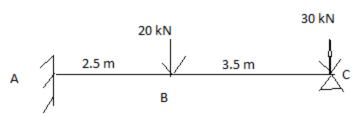
Academic Year : 2021-22 Date: 25-11-2020

Semester : I

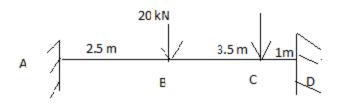
Name of the Program: M.Tech (Structural Engineering)

Year: I

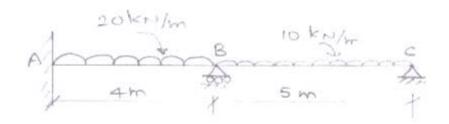
Course/Subject: Matrix Methods in Structural Analysis (GR20D5001)

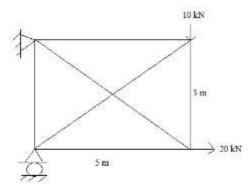

Name of the Faculty: Dr.G.V.V. Satyanarayana Dept. Civil Engineering

Designation : PROFESSOR


This Assignment corresponds to Unit No-4.

Q1. Develop a stiffness matrix for the structure with given dof's.


Q2. Analyse the propped cantilever beam using stiffness matrix method as shown below.


Q3. Determine the support moments and also draw SFD and BMD's of a fixed beam as shown in the figure below using displacement method.

Q3. Analyze the continuous beam as shown in figure below using stiffness matrix method if the support C sinking 10 mm. Take $EI = 18000 \text{ kn-m}^2$.

- Q4. Explain the stepwise procedure to analyze a portal frame in stiffness matrix method.
- Q5. Analyse the truss as shown below using force method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective	Nos.:	<u>4</u>	 								

Outcome Nos.: <u>4</u>.....

Signature of HOD Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 5

Academic Year	: 2021-22	Date: 10-12-2020									
Semester	: I										
Name of the Program: M.Tech (Structural Engineering)	Year: I									
Course/Subject: Matrix Methods	Course/Subject: Matrix Methods in Structural Analysis (GR20D5001)										
Name of the Faculty: <u>Dr.G.V.V.</u>	<u>Satyanarayana</u>	Dept. Civil Engineering									
Designation : PROF	ESSOR										
This Assignment corresponds to	Unit No-5.										
Q1. Explain the Importance about special analysis procedures. Q2. What is static condensation and explain its importance? Q3. Explain static condensation with suitable example. Q4. What is sub-structuring and explain the Importance of sub structuring in structural analysis? Q5. What is effect due to initial and thermal stress in structures? Q6. Discuss in analysis of special structures. Q7. Explain the term static condensation and describe with suitable example. Q8. What is shear wall and list various types of shear walls. Q9. Explain the role of shear walls in large structures and also explain with their locations. Q10. Describe the behaviour of shear wall in large frames with and without shear walls. Q11. Explain the different analysis methods of shear walls.											
_	blems / Exercises which you would s to which these Questions / Prob	I like to give to the students and also lems / Exercises are related.									
Objective Nos.: <u>5</u>											
Outcome Nos.: <u>5</u>											
Signature of HOD		Signature of faculty									
Date:		Date:									

RUBRIC SHEET

Academic Year : 2021-22

Semester : I

Name of the Program: M.Tech Structural Engineering Year: I

Course/Subject: **Matrix Methods in Structural Analysis**Name of the Faculty: Dr.G V V Satyanarayana

Course Code: **GR20D5001**Dept.: Civil Engineering

Designation: Professor

Objective: To learn basics and concepts of Structural analysis.

Student Outcome: Behavioural studies or analyze the structural elements under loading and study different parameters such as induced forces, bending moments, shear forces, stresses,

strains, deflection etc.,

			Beginning	Developing	Reflecting Development	Accomplished	Exemplar y	Score
S. No	Name of the Student	Performance Criteria	1	2	3	4	5	
		Analysis of structural elements The level of	Low level of knowledge on calculation of support reactions Low level of knowledge	Able to discuss the principles of energy theorems Able to discuss	Ability to explain the application of energy theorems Ability to explain	Full knowledge on application of energy theorems Full knowledge	Analyzing and implement in structures Analysing and	4
1	21241D 2010	knowledge on types structures such as arches, statically determinate and indetermin ate beams	on types structures such as arches, statically determinate and indeterminat e beams	types of structures and their importanc e in civil engineeri ng constructi ons	types of structures and their importance in civil engineering constructio ns	on types of structures and their importance in civil engineering construction s	application of knowledge on types of structures and their importance in civil engineering constructions	
		The level of knowledge to analyse various engineering structures.	Low level of knowledge to analyse various engineering structures.	Ability to discuss and to study the various engineeri ng structures	Ability to explain various engineering structures.	Full knowledge on various engineering structures.	Analysing and implementing the knowledge of various engineering structures. Average Score	3

MAPPING

GR20D5001 Matrix Methods in Structural Analysis	Course Outcomes				
Course Objectives	1	2	3	4	5
1	X				
2		X			
3			X		
4				X	
5					X

GR20D5001 Matrix Methods in Structural Analysis	Course Outcomes				
Assessment	1	2	3	4	5
1	X				
2		X			
3			X		
4				X	
5					X

GR20D5001 Matrix Methods in Structural Analysis	Course Objectives				
Assessments	1	2	3	4	5
1	X				
2		X			
3			X		
4				X	
5					X

Course		Program Outcomes						
		2	3	4	5	6		
GR20D5001 Matrix Methods in Structural	v	v	v	v	X	v		
Analysis		Λ	Λ	Λ	Λ	Λ		

GR20D5001 Matrix Methods in Structural Analysis	Program Outcomes				nes	
Course Outcomes	1	2	3	4	5	6
Evaluate the static and kinematic indeterminacy and generate stiffness and flexibility matrices.	M		M	M	Н	M
Analyse the skeleton structures using stiffness method under different coordinate system.	M		M	M	M	M
Use flexibility matrix method to analyse different structures.	M		Н	M	M	M
Use stiffness matrix method to analyse different structures.	M	M	Н	M	Н	M
Analyse various types of structural members using special analysis procedures and shear walls in multi storied constructions	M	M	M	M	M	M

SET - 1

I M.Tech I Semester Regular Examinations, June 2021

MATRIX METHODS IN STRUCTURAL ANALYSIS (Structural Engineering)

Time: 3 hours Max Marks: 70

< Note: Type the questions in the given format only, Times New Roman font, size 12 >

Instructions:

- 1. Question paper comprises of Part-A and Part-B
- 2. Part-A (for 20 marks) must be answered at one place in the answer book.
- 3. Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.

PART - A

(Answer ALL questions. All questions carry equal marks)

10 * 2 = 20 Marks

		10 2	- 2 0 1/14	
1. a.	Distinguish between static and kinematic indeterminacies.	[2]	CO 1	BL 4
b.	What is transformation matrix?	[2]	CO 1	BL 1
c.	The stiffness matrix of a beam is given as $\begin{bmatrix} 5 & 2 \\ 2 & 4 \end{bmatrix}$, when the nodal forces are $\begin{bmatrix} 10 \\ 7 \end{bmatrix}$ find the nodal displacements	[2]	CO 2	BL 1
d.	Explain about local and global coordinates with suitable sketches	[2]	CO 2	BL 2
e.	Evaluate the flexibility matrices for the given co-ordinate system:	[2]	CO 3	BL 5
f.	Determine the static in determinacy of the given structure.	[2]	CO 3	BL 5
g.	Evaluate the stiffness matrices for the given dof's:	[2]	CO 4	BL 5

CODE: GR20D5001

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
h.	List out the properties of stiffness matrix.	[2]	CO 4	BL 1
i.	Explain the effects temperature in various structures	[2]	CO 5	BL 2
j.	Draw various types of shear walls with their advantages	[2]	CO 5	BL 1
	PART – B (Answer ALL questions. All questions carry equal mark		0 = 50 M	larks
2.	(a) Define the term of degree of freedom and explain in detail with	[5]	CO 1	BL 5
	suitable structures. (b) Find the kinematic in determinacy indeterminacy of the structures given below:	[5]	CO 1	BL 1
	OR			
3.	(a) When did you prefer stiffness matrix method over flexibility matrix	[5]	CO 1	BL 1
	method explain with suitable example			
	(b) Explain briefly transformation of coordinates with suitable figure	[5]	CO 1	BL 2
4.	(a) Generate or Develop stiffness matrix for the given structure using	[10]	CO 2	BL 3
	Direct Stiffness method or approach			
	$\frac{1}{1} = \frac{1}{1} = \frac{3}{1}$ $= 1 = Constant.$			
	- Langton .			
	OR			
5.	(a) Explain the methodology of assemblage of stiffness matrices.	[5]	CO 2	BL 2
	(b) Explain the stepwise procedure in analysis of kinematically in determinate structures using stiffness matrix method	[5]	CO 2	BL 2
6.	(a) Analyse the propped cantilever beam as shown below using flexibility matrix method.	[10]	CO 3	BL 4

	T		1	
	20 kN 30 kN 2.5 m C			
	OR			
7.	(a) Analyse the plane truss as shown below using force method.	[10]	CO 3	BL 4
8.	(a) Analyse the continuous beam using stiffness method as shown in figure. Let I ab = 1.5 I bc.	[10]	CO 4	BL 4
9.	(a) Analyse the portal frame as shown below using displacement method. Take EI as constant.	[10]	CO 4	BL 4
10.	(a) Explain the term static condensation and describe with suitable	[5]	CO 5	BL 2
	example (b) Discuss in analysis of special structures.	[5]	CO 5	BL 6
	OR			
11.	(a) Discuss the behaviour of shear wall in large frames with and without shear wall.	[5]	CO 5	BL 6
	(b) Explain any two different analysis methods of shear walls.	[5]	CO 5	BL 2

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Department of Civil Engineering

I M.Tech. I Semester MID II EXAMINATION February-2022

Matrix Methods in Structural Engineering (GR20D5001)

Time: 75 Minutes Date of examination 07-02--202 Max.Marks: 15 Marks
Answer all questions 3x5=15 Marks

Name : _____ Roll No. D

Part-B

1. a) Distinguish between Static and Kinematic indeterminacies.

2 M (CO 1)

b) Evaluate Static and Kinematic of given structures:

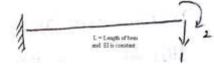
3 M (CO 3)

OR

- c) Determine kinematic indeterminacy of above structures
- d) Distinguish between local and global coordinates.

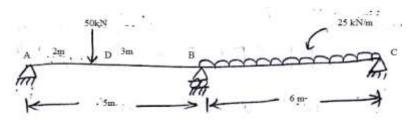
3 M (CO 1 2 M (CO 1)

2. a) Compare stiffness matrix using direct stiffness method..


2 M (CO 2)

b) Explain the procedure for assemblage of stiffness matrices.

3 M (CO 4)


c) Evaluate the stiffness matrix for the given below structure:

5 M (CO 4)

3. (a) Analyse the beam as shown below using Flexibility matrix method.

M (CO3)

OR

(b) Analyse the truss as shown below using Flexibility matrix method.

5 M (CO5)

Time: 15 Minutes

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Department of Civil Engineering

I M.Tech. I Semester MID I EXAMINATION February-2022

Max.Marks: 5 Marks

Matrix Methods in Structural Engineering (GR20D5001)

Date of examination: -02-2022

Answer all questions	All questions carry	equal marks	10 X	$\frac{1}{2} = 5 \text{ Ma}$	rks
Name :					
Choose the correct answers. 1. The origin lies in natural co-A) At centre of element		f element C) away from	element D) Either	[A or B]
2. The value of increases meansA) Increaes	s the deformation leads B) decreases	C) Can't say	D) Either	[A or B]
3. The relation between FlexibilA) Directly B) Inverse C	•	be proportional to None of the above		[]
4. The moment required to prod	duce unit rotation when	far end is hinged or simp	ply supported	[]
A) $\frac{2EI\theta}{L}$	B) $\frac{EI\theta}{L}$	C) $\frac{4EI\theta}{L}$	D) $\frac{6EI\theta}{L}$		
5. The moment required to produ	ace unit rotation when	far end is fixed		[]
A) $\frac{6EI\delta}{l^2}$ B) $\frac{3EI\delta}{l^2}$	C) $\frac{4 EI\delta}{l^2}$ D) $\frac{E}{l}$	<u>18</u>			
6 Which matrix method is suital A) Flexibility Matrix method		method C) Either A o	r B D) both are n	[ot suitabl] e
7. If given structure dof is equals A) 2 X 2	to 2, the size of stiffne B) 1 X 1	ess matrix is equals to C) 3 X 3	D) 2 x1	[]
8. The number of redundants at h A) 1 B) 2		equal to D) Zero		[]
9. The degree of freedom (dof) f A) 1 B) 2	for fixed support will b C) 3	e equal to D) Zero		[]
10. The stiffness matrix method: A) Flexibility matrix method	is also known as B) Force method	C) Displacement me	ethod D) Eithe	[r A or B]

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

	M.Tech Structural Engg. I yr-I Sem- GR20 2021-22							
	Matrix Methods in Structural Analysis GR20D5001 (MID-I) S No Roll No Name of Student Maximum Marks (20 M)							
S.No	Roll No	Roll No Name of Student						
1	21241D2001	ATKAPURAM PRASHANTH						
2	21241D2002	BANDI SRI RAM GOPAL						
3	21241D2003	CHALLA MADHAVI						
4	21241D2004	PAMMI DIVYA						
5	21241D2005	DUMMA UMESH KUMAR						
6	21241D2006	K LATHASREE						
7	21241D2007	MARIYALA VAISHNAVI						
8	21241D2008	MAVOORI PRANAV						
9	21241D2009	MITTAPALLI NAGA ASHWINI						
10	21241D2010	RAVULA VENKATA SURAJ REDD						
11	21241D2011	REPATI MOHAN BABU						
12	21241D2012	ANDHYA CHERUKU						
13	21241D2013	SHAIK FEROZ						
14	21241D2014	K SAI CHANDRA						
15	21241D2015	THOTA HARSHAVARDHAN						
16	21241D2016	ARIKUPPALA LALITHA						
17	21241D2017	AMBA RAMA GNANENDRA SAI						
18	21241D2018	SAI YENUMALA DEVESH GOUD						
19	21241D2019	RASHANTH KUMAR						
20	21241D2020	BAVANDLAPELLI THARUN TEJA						
21	21241D2021	GNITISH KUMAR						

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

	M.Tech Structural Engg. I yr-I Sem- GR20 2021-22							
	Matrix Methods in Structural Analysis GR20D5001 (MID-II) S No Roll No Name of Student Maximum Marks (20 M)							
S.No	Roll No	Roll No Name of Student						
1	21241D2001	ATKAPURAM PRASHANTH						
2	21241D2002	BANDI SRI RAM GOPAL						
3	21241D2003	CHALLA MADHAVI						
4	21241D2004	PAMMI DIVYA						
5	21241D2005	DUMMA UMESH KUMAR						
6	21241D2006	K LATHASREE						
7	21241D2007	MARIYALA VAISHNAVI						
8	21241D2008	MAVOORI PRANAV						
9	21241D2009	MITTAPALLI NAGA ASHWINI						
10	21241D2010	RAVULA VENKATA SURAJ REDD						
11	21241D2011	REPATI MOHAN BABU						
12	21241D2012	ANDHYA CHERUKU						
13	21241D2013	SHAIK FEROZ						
14	21241D2014	K SAI CHANDRA						
15	21241D2015	THOTA HARSHAVARDHAN						
16	21241D2016	ARIKUPPALA LALITHA						
17	21241D2017	AMBA RAMA GNANENDRA SAI						
18	21241D2018	SAI YENUMALA DEVESH GOUD						
19	21241D2019	RASHANTH KUMAR						
20	21241D2020	BAVANDLAPELLI THARUN TEJA						
21	21241D2021	GNITISH KUMAR						

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.: I

Name of the Program: M.Tech(Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis

Name of the Faculty: Dr.GVV Satyanarayana

Course Code: GR20D5001

Dept.: Civil Engineering

Designation: PROFESSOR.

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.:to
1	16-11-2021	1	Unit – I Introduction to Matrix methods of Analysis - Introduction about Matrix Methods in Structural analysis	1 & 1	Structural Analysis by S.S.Bhavikati
2	17-11-2021	1	Determination of Static indeterminacy of structures	1 & 1	Strength of Materials and Mechanics of structures by B.C.Punmia
3	19-11-2021	1	Determination of Kinematic indeterminacy of structures	1 & 1	
4	19-11-2021	1	Determination of DOF of given structures	1 & 1	
5	23-11-2021	1	Explain the co-ordinate system	1 & 1	
6	24-11-2021	1	Structure idealization	1 & 1	
7	26-11-2021	1	Differentiate & relation between Stiffness & Flexibility Matrix methods	1 & 1	
8	26-11-2021	1	Explain general equations for Flexibility & stiffness matrix methods	1 & 1	
9	13-11-2021	1	Derivation of displacement equations for truss element	1 & 1	
10	01-12-2021	1	Derivation of displacement equations for beam elements	1 & 1	
11	03-12-2021	1	Derivation of displacement equations of tensional elements	1 & 1	
12	03-12-2021	1	Discuss on element stiffness matrix	1 & 1	
13	07-12-2021	1	Discuss on local and Global coordinates	1 & 1	

Signature of HOD Date:

Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.: II

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis
Name of the Faculty: Dr.GVV Satyanarayana

Course Code: **GR20D5001**Dept.: Civil Engineering

Designation: PROFESSOR.

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.:to
1	08-12-2021	1	Unit- II Stiffness Matrix Assembly of Structures and its	2 & 2	Structural Analysis by S.S.Bhavikati
2	10-12-2021	1	Local matrix and global matrix for load and displacement vectors (Stiffness matrix in global coordinates)	2 & 2	Strength of Materials and Mechanics of structures by B.C.Punmia
3	10-12-2021	1	stiffness matrix approach and Applications to Simple Problems method	2 & 2	
4	14-12-2021	1	Evaluation of stiffness matrix using Direct Stiffness method	2 & 2	
5	15-12-2021	1	General procedure of assembly of stiffness matrices	2 & 2	
6	17-12-2021	1	Discuss on boundary conditions	2 & 2	
7	17-12-2021	1	Solutions of stiffness matrix equations	2 & 2	
8	21-12-2021	1	Solutions of stiffness matrix equations	2 & 2	
9	22-12-2021	1	Assembling global stiffness matrices	2 & 2	
10	24-12-2021	1	Spring problems	2 & 2	

Signature of HOD
Date:
Signature of faculty
Date:

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.: III

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis

Name of the Faculty: Dr.GVV Satyanarayana

Course Code: **GR20D5001**Dept.: Civil Engineering

Designation: PROFESSOR.

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.:to
1	24-12-2021	1	Unit-III Introduction about Flexibility matrix method(Force Method) And application to indeterminate beams	3 & 3	Structural Analysis by S.S.Bhavikati
2	28-12-2021	1	Flexibility matrix approach to statically indeterminate beams	3 & 3	Strength of Materials and Mechanics of structures by B.C.Punmia
3	29-12-2021	1	Methodology to calculate redundant forces at beam joints using flexibility matrix method	3 & 3	
4	31-12-2021	1	Methodology to calculate redundant forces at beam joints using flexibility matrix method	3 & 3	
5	31-12-2021	1	Analyze continuous beams by using flexibility matrix methods carrying with different loads	3 & 3	
6	04-01-2022	1	Analyze continuous beams by using flexibility matrix methods carrying with different loads and sinking supports	3 & 3	
7	54-01-2022	1	Analyze plane truss by using flexibility matrix methods carrying with different loads	3 & 3	
8	07-01-2022	1	Analyze plane truss by using flexibility matrix methods carrying with different loads	3 & 3	
9	07-01-2022	1	Analyze plane frame by using flexibility matrix methods carrying with different loads	3 & 3	
10	11-01-2022	1	Analyze plane frame by using flexibility matrix methods carrying with different loads	3 & 3	
11	12-01-2022	1	Solving old question papers in unit -3	3 & 3	
12	25-01-2022	1	Solving old question papers in unit -3	3 & 3	

Signature of HOD Date:

Signature of faculty Date:

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.: IV

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis

Name of the Faculty: Dr.GVV Satyanarayana

Course Code: GR20D5001

Dept.: Civil Engineering

Designation: PROFESSOR.

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.:to
1	28-01-2022	1	Unit-IV Introduction about Flexibility matrix method(Displacement Method) And application to indeterminate beams	4 & 4	Structural Analysis by S.S.Bhavikati
2	28-01-2022	1	Stiffness matrix approach to kinematically indeterminate beams	4 & 4	Strength of Materials and Mechanics of structures by B.C.Punmia
3	01-02-2022	1	Methodology to calculate redundant forces at beam joints using stiffness matrix method	4 & 4	
4	02-02-2022	1	Methodology to calculate redundant forces at beam joints using stiffness matrix method	4 & 4	
5	04-02-2022	1	Analyze continuous beams by using stiffness matrix methods carrying with different loads	4 & 4	
6	04-02-2022	1	Analyze continuous beams by using stiffness matrix methods carrying with different loads and sinking supports	4 & 4	
7	08-02-2022	1	Analyze plane truss by using stiffness matrix methods carrying with different loads	4 & 4	
8	09-02-2022	1	Analyze plane truss by using stiffness matrix methods carrying with different loads	4 & 4	
9	11-02-2022	1	Analyze plane frame by using stiffness matrix methods carrying with different loads	4 & 4	

	11-02-2022		Analyze plane frame by using		
10		1	stiffness matrix methods	4 & 4	
			carrying with different loads		

Signature of HOD Date:

Signature of faculty Date:

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.: V

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR20D5001

Name of the Faculty: Dr.GVV Satyanarayana Dept.: Civil Engineering

Designation: PROFESSOR.

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.:to
1	15-02-2022	1	Unit-V Introduction about Special analysis procedures	5 & 5	Structural Analysis by S.S.Bhavikati
2	16-02-2022	1	Importance about special analysis procedures	5 & 5	Strength of Materials and Mechanics of structures by B.C.Punmia
3	18-02-2022	1	Explain static condensation with suitable example	5 & 5	
4	18-02-2022	1	What is sub-structuring? And its importance in structural analysis	5 & 5	
5	22-02-2022	1	What is effect due to initial and thermal stress in structures?	5 & 5	
6	23-02-2022	1	Introduction and Necessity of shear walls	5 & 5	
7	25-02-2022	1	Importance of shear walls in structures and their location in structures	5 & 5	
8	25-02-2022	1	Structural behaviour of large frames with and without shear wall	5 & 5	
9	01-03-2022	1	Approximate methods of analysis of shear walls	5 & 5	

Signature of HOD Date:

Signature of faculty

Date:

STRUCTURE: A Structure refers to a System of Connected parts used to Support In an

do the Mary Mary many

when any elastic body, each subjected to a system of loads and deformation takes place and the resistance is betup against the deformation, then elastic body is known as structure. Classification of structure:

- 1. Sheletal structures
 - 2 Surface structures
 - 3. Solial Structures.
 - 1. Skeletal Structures: Structures can be idealized to a Series of straight or curved lines

130000 anoly haday looped (d)

Durfasted gave have

Ex: Bearing frames! alle par sorty rolling as ist

2. Surface structures: structures which can be idealised to plane or curved surfaces.

Ga: Slabs and Shells.

Angle of Inclination < 30 flat roofs. Angle of Inclination >30 fitched roofs.

3. Solid Structures: Structures which can neither be idealised to a steletal nor plane curved surfaces. En: Massive Dimensions [All the dimensions are predominant]

-> Explain classification of sceletal structures. Based on types of Joints:

() Pinjointed frames:

In this joint members are connected by means of Pinjointed. This frame members can support only axial force and all external forces should act at member joints.

(i) Rigid jointed frames:

These frames resist external forces by developing BM, SF, AF and twisting moments in the members of frames.

Based on dimensions:

ci) Plane frames:

All the members of the plane frame as well as external loads are assumed to be in one plane.

(a) pin jointed plane frame: All the members can carry axial forces only

(b) Rigid jointed plane frame: These members can carry AF,
-SF, BM and twisting moment.

(ii) space frames:

All the members of the plane donot lie in one plane it lies in another plane. Very often it is also the Combination of Series of planes.

(a) Pinjointed space frame: Members will allow axial forces only
(b) Rigid jointed space frame: These members can carry AF,

SF, BM and twiting moment

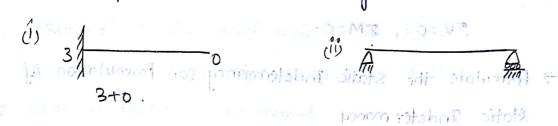
-> List out equations of Static equilibrium: Equations of Static equilibrium

for plane frame: In case of plane fram Subjected to in-plane external forces.

Ex: Xy plane. Efx =0 EH=0

Efy=0 \(\Sigma V = 0 \)

\(\Sigma F_Z = 0 \)


\(\Sigma M = 0 \)

for Space frame: EFx = EFy = EFz = 0.

These structures can be analysed with available equilibrium equations called as statically determinate structure.

These structures undergo finite deformation before the conditions of equilibrium are satisfied the deflection.

Ex: A cantilever beam, supposted beam and a A suspension cable and 3-hinged Arch.

Statically Indeterminant:

Those structures cannot be analysed with available static equilibrium equations. In this structure the reaction components and internal stresses cannot be analysed with available static equilibrium condition. There structures can analyse with additional equations based on condition of compostibility consistency

Ga: Re is colculated as

Consistency deformations (0) rotations, horizontal consistency deformations (0) rotations (0) rotations

-> How to calculate static indeterminate structures.

redundancy.

Equations in addition to Static equilibrium equation necessary to complete analyse Statically indeterminate structure. It is denoted by Ds

Ds = no of unknowns - static equilibrium equation.

Note: Static equilibrium equations are two when only Vertical forces are considered.

EV =0 , EM=0.

Formulate the Static Indetermiancy con Formulation of Static Indetermancy.

where, Dse = External Indeterminacy (Due to Support readling)

Dsi = Internal Redundancy.

Ga: Dse is calculated as false

Dse = r-6 for space frame

Dse = r-3 for plane frame

allo trade unknown forces at Supports bus shooged

Dsi = Static Britem al redundancy dolla dollaro

Dsi = m - (2j-3) for Pinjointed plane frame

Dsi = m - (3j - 6) for pinjointed space frame.

For rigid jointed plane frame -3C

For rigid jointed space frame - 60

NOTE: simplified formulas including external as well as internal

1) Pinjointed plane frame
$$Ds = 7-3 + m-2j+3$$

$$D_s = (r+m)-2j$$

2) Pin jointed Space frame

$$D_s = r - 6 + m - 3j + 6$$

(3m+r)-3j for rigid jointed plane frame. (6m+r)-6j for rigid jointed space frame.

-> What is Cantilever tree Concept.

Cantilever tree Concept:

The total degree of indeterminacy of nigid frame can be obtained by wing the statical indeterminacy criterian and alternative method is suggested here, the basis is that by witing a Section, we are releasing the 3 resultants as shown in

fig.

-> There are arrial forces (H), shear force (V), BM (M)

-> Then total degree of Indeterminacy A

NOTE !

whenever is a Internal hinge the Static indeterminacy will reduce.

in Because the moment can't be transmitted from one end to another end.

(ii) Internal links (on Bars: A link is a short bor with pin at each end. By this internal link the Static indeterminacy

can be reduced by 2(2M=0,2H=0)

-> Evaluate the static Endelerminacy of a given structure.

$$D_S = 3C - 2$$

$$= 3(6) - 2 = 16$$

(plane frame)

(Rigid jointed plane frame)

$$(3(14)+10)-3(12)=(52+6)-26=22$$

when lateral forces are considered, no of releases = 2

28/8/18

Type of Support

Fixed &

hinge A

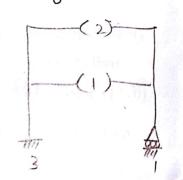
Roller A

fixed end _

Horizontal Shear

release m

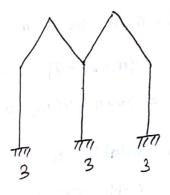
Vertical sheor release


No of reaction.

$$M = 3$$

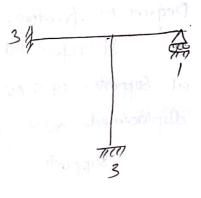
$$H \rightarrow 1 = 2$$

D


-> Calculate the static indeterminacy of a structure given below.

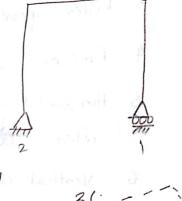
$$m=6$$
 $DS = (3m+v)-3j$
 $j=6$ $= (18+4)-18$
 $Y=4$ $= 4$

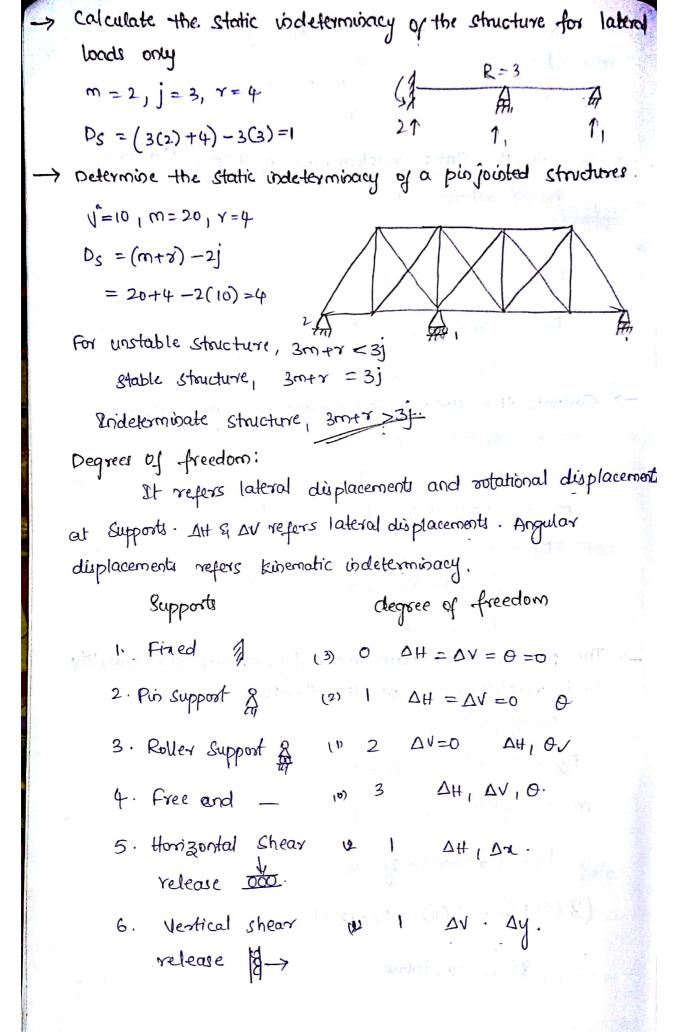
-> Evaluate the static indeterminacy of a given structure.


$$0.0 \cdot 0.0 = 0$$
 releases = 0
 $0.0 \cdot 0.0 = 0$ releases = 0
 $0.0 = 0.0 = 3(0.0) = 0.0$
 $0.0 = 0.0 = 3(0.0) = 0.0$
 $0.0 = 0.0 = 3(0.0) = 0.0$
 $0.0 = 0.0 = 3(0.0) = 0.0$
 $0.0 = 0.0 = 3(0.0) = 0.0$
 $0.0 = 0.0 = 3(0.0) = 0.0$
 $0.0 = 0.0 = 3(0.0) = 0.0$
 $0.0 = 0.0 = 3(0.0) = 0.0$
 $0.0 = 0.0 = 3(0.0) = 0.0$
 $0.0 = 0.0 = 3(0.0) = 0.0$
 $0.0 = 0.0 = 3(0.0) = 0.0$
 $0.0 = 0.0 = 3(0.0) = 0.0$

→ Evaluate the Static indeterminacy of a given structures.

no of releases = 2


$$0_S = 3C - 2 = 3(2) - 2 = 4$$
 $m = 3$; $j = 4$; $\gamma = 7$
 $D_S = (3m + \gamma) - 3j$
 $= (3(3) + 7) - 3(4)$
 $= 16 - 12 = 4$


-> The plane frame shown in the fig. Evaluate the stability and indeterminacy of the structure.

no. of releases = 1

$$D_{SC} = 3C - 1 = 3C_1) = 1 = 2$$
 $m = 3$, $j = 4$, $\gamma = 3$, $R = 1$
 $D_{S} = (3m + \gamma) - 3j - R$
 $(3(3) + 3) - 3(4) = 12 - 12 - 1 = -1$

81 is unstable

negrees of freedom for typical joints Typical joint D.OF Types of deflection. DH (DA), DV (DY), O Free end 1— 3 thinge at 2 DV, AH, O. + internal hinge 3+2=5 ΔH, ΔV, 30 (θ1, θ4, θ4) 202 Internal hinge 4 AH, DV, 20. Closed damper 4 DH1, DH2, DV, O. -112 open damper 4 2 DV, DH, O 31/8/18 thow to formulate a kinematic indeterminacy of the structures. Formulation of timematic Endeterminary (DK): (1) for a rigid jointed plane frames, DK = NJ-C where, N=no. of degree of freedom of each joints J = no. of joints C = no of reaction Components NOTE: C=7, if the members are extensible C=m+r, if the extension of the members 'M' are neglected. i) Dk = 3j-8 (for signal jointed plane frame) and considering arial strains of members also.

(1) Dk = 3j-(m+r) (for origid jointed plane framer and neglecting axial strains i.e., all erre inextensible)

(111) DK = 6j-7 (for nigid jointed space frame and Considering axial strains of members)

(iv) Ox = 6j - (m+r) (for nigid jointed space frame and neglecting azial strain of the members.

NOTE: In calculation of degree of kinematic indeterminary treat a supports also as joints

[If OK is increasing, size of stiffners matrix it also increases]

-> Evaluate the olegree of kinematic indeterminacy for the given structure as shown in fig assuming the members are in anially stiff.

$$J = 4 \cdot Y = 4 \cdot M = 3$$

$$DK = 3j - 8$$

$$= 3(4) - 4 = 12 - 4 = 8$$

when, anial strains are neglected, m= 3

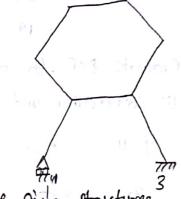
$$D_k = 3j - (m+3)$$

= 3(u) -(3+4) = (2-7=5.

> Evaluate kinematic indeterminacy of beam as shown in fig

$$j=3$$
, $r=4$, $m=2$
extensible, $D_{K}=3j-8$
 $=3(3)-4=9-4=5$
Rnewtensible, $D_{K}=3j-(m+1)=3(3)-(2+1)$
 $=9-6=3$

is fig and considering the members of azially stiff.


$$D_{K} = 3j-7$$

$$= 3(8)-4$$

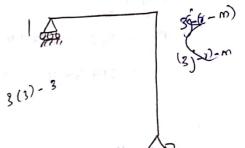
$$= 249-4$$

$$= 20$$

$$D_{C} = 3\hat{j} - (m+r) = 3(8) - (8+4)$$

= 24-12 = 12

-> Neglecting asual deformations for the given structures 3 determine DOF.

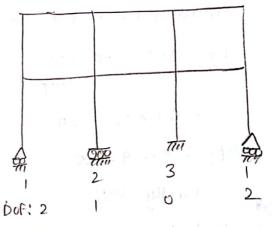

NOTE: If the Column is only extensible.

$$J=3; m=2; r=3$$

$$Dk = 3j - (m+3)$$

$$= 3(3) - (2+3)$$

$$= 9-5=4$$



Column is only inextensible, Dr = GH = 5.

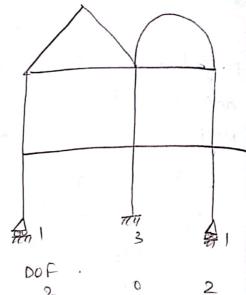
-> Evaluate kinematic indeterminacy of structure when neglecting

The axial deformation'

$$j=12_1$$
 $m=14_1$ $y=7$
 $9c=3j-7$
 $=3(12)-7=36-7$
 $=29$

alternative:

Rigid joint = 8

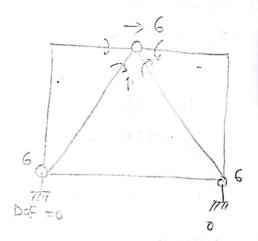

$$DK = 3j - 8$$

$$= 24 - 5$$

$$= 19$$

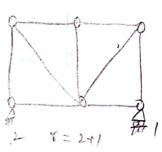
-> Evaluate DOF for members of structures as shown in fig. (1) considering and by neglecting axial strains.

$$3j-y=33-5=28$$


-> Evaluate the DOF for the given member.

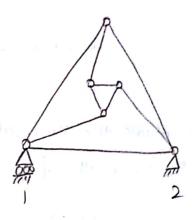
$$D_{K} = 2x3 + 3x6 + (2x0)$$

Suppost


$$=6+18+0=24$$

azially Stiff.

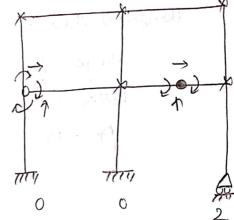
40/18 Evaluate kinematic indeterminacy of trus as shown in fig


$$= 2(6) -3$$

By observing the following frame shown below, Evaluate the static indeterminacy and kinematic indetermin

$$DS = (m+r) = 2j$$

= 0 (Statically determinate)


Very difficult to evaluate as it develops internal stresses

$$DR = 2\hat{j} - 8\pi \sin n + 3\pi \sin n$$

It is lemenatically isoleterminate with degree 9

-> Evaluate kinematic indeterminacy of the frame on shown in

→ whenever, there is a pinjoint it is not connected to one side but it is connected to another end.

no of unknowns at hinge internal = 4

no of unknowns at pur joint =5

reactions = 0,0,2 Dr = 5x3 +5+4 + (0+0+2) RJ PJ. DH. Supports -15+5+4+2 = 26. -> Evaluate the Kinematic Indeterminary of a Structure of shown to the fig. 0 1 2 3 3 3 4 10 Dr = 4+1+4 =9 m=4 If members are in extensible DK-M=9-4=5. - Evaluate the degree of kinematic indeterminary of the given structure as shown in the fig Dor at nigit joints = 3×3 ≥9 Internal hinge = 4 Horizontal shear 21 Hinge =1 Roller = 2 DR = 17 totalar and 3j-v= Con 2 Jun 1 3j- (mtr)= Re.

5/9/18

Stiffness matrix method:

The statically indeterminate structures are analysed by flexibility matrix method.

richin man 149 with stranger of the t

If any structure is kinematically indeterminate then
the structure can be analysed by stiffness matrix method.
NOTE: If DKI > DSI, then flexibility matrix method
is useful.

1/24 If DKI < DSI, then stiffness matrix method is useful.

-> Evaluate which method is suitable for analysis.

$$D_{S} = 3C = 3(1) = 3$$

$$D_{S} = (3m+r)-3j$$

$$= 9+6-12$$

$$= 3$$

$$D_{k} = 3j - 7$$
 $D_{k} = 3j - (r+m)$
 $= 12 - 6$
 $= 6. (Total)$
 $= 3 (inextensible).$

Since Ds = Dx any method is preferable.

$$D_S = 3c - 2$$
 $Y = 4$
 $= 3 - 2 = 1$ $m = 3$
 $D_K = 3j - Y = 12 - 4$ m

Ox > Ds, so that the flexibility matrix method

O preferable.

(1) 0.100 - 09

-> How to generate the Stiffness matria. 1. The Size of stiffners matria depends on degree

of kinematic indeterminancy;

2. The element stiffness matrix is generated or determined by applying unit displacement at each node and determining the forces at each coordinate to sustain the displacement (As per stiffners, k=P)

3. Similarly the element stiffness matrin is generated

by applying unique notation at each node and determining moment at each coordinate i.e., $K = \frac{10}{0}$ The moment required to get unique rotation if for

end is fixed = 4EI.0

If the far end is hinged the M= 3EI .0

2V=0.

Rat Rb=0 5 m

EM6 50

$$M = \frac{6EI}{12}$$
 $M = \frac{6EI}{12}$
 $M = \frac{6EI}$

aldorafieroble

$$Ra(1) = -\frac{6EI}{l}$$

$$R_{Q} = -\frac{6 \in I}{L^{2}} \cdot O \left(\downarrow \right)$$

$$R_{b} = -\left(-\frac{6ET}{l^{2}}o\right)$$

$$R_{b} = \frac{6ET}{l^{2}} \cdot o \left(\right)$$

Two equiunlite parallel forces are called Couple.

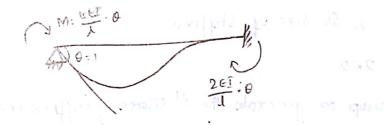
NOTE: In stiffners matrix method consider every joint as fixed.

-7 Determine stiffners matrix for the beam as shown is fig with degrees of freedom as shown.

1=3 Degree of freedom = 2.

A=1 size of stiffnessmatria is 2x2

E=2


T = 3.

Step 1: Apply unit dûplacement (sotation) at 1 only and restrain a. from notation.

Now we will achieve the 1st column of stiffness matrix

$$[K]_{2}\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$$

Ky = Apply unit-oliplacement at 1 and evaluate either moment or force at 1.

$$k_{11} = \frac{4EP}{1}, 0 = \frac{4x2 \times 3}{3}.(1) = 8$$

$$k_{21} = \frac{2EI}{1} \cdot 0 = \frac{2 \times 2 \times 3}{3} (1) = 4$$

step 2: Evaluate or generate the 2nd column of stiffners matrix.

Note: Apply unit solution along coordinate 2

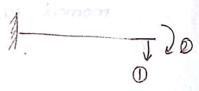
$$M = \frac{2EI}{L} O$$
.

$$k_{12} = \frac{2ET}{1}.0 = 2x2x3.(1) = 4$$

$$k_{22} = \frac{4ET}{1}.0 = \frac{4x_2x_3}{3}$$
 (1) =8.

$$\begin{bmatrix} k \end{bmatrix} = \begin{bmatrix} 8 & 4 \\ 4 & 8 \end{bmatrix}$$

Properties of stiffners matrix:


l' Stiffness matriz is a square matriz.

2. It is a symmetrical matrix, diagonal elements are positive, non-zero, non-negative.

H9/18

-> Develop or generate stiffness matein for a beam of.

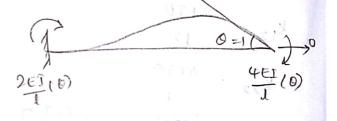
for the given beam element the DOF 0 2 80 Size of Stiffner

matain U 2x2

Step1: To develop or generale the 1st column of stiffners matrix.

Apply until displacement along Coordinate 1. $\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$ KII 2 12EIS $K_{21}: -\frac{6\epsilon_{1}\delta}{1^{2}}$. $\frac{6\epsilon_{1}\delta}{1^{2}}$ step:2 the and when of stiffners matrix. Apply unit diplacement along coordinate 2. GETTO K12 = -6EID $\begin{bmatrix} k \end{bmatrix} : \begin{bmatrix} 12EI & -6EI \\ 12 & & & \\ & & & \end{bmatrix}$ > Develop or generate the stiffners routin for the beam element as shown in the fig. (Elis constant wast the DOF) Here, As the given DOF =3 the st size of stiffness matria = 3x3 Steplifo generate the 1st column of stiffness matrix apply unit displacement along the coordinate 1

com displacement change Consider But, whenever it U considered a Stiffness materia then there will be fixed enols.



EI = Constant

Us area = A

$$k_{31} = 0$$

step: 2! Apply unit notation along coordinate 2 to generate and column of stiffness matria.

Step 3: To get the 3rd column of stiffness matria, apply unit displacement along coordinate 3.

As hurrizontal displacement donot have any moment : K130 = 0. As per hootes law.

$$K_{33} = \frac{AE}{1}$$
 force, $P = \frac{AE}{1}$ f

$$k_{33} = \frac{AE}{1}.$$

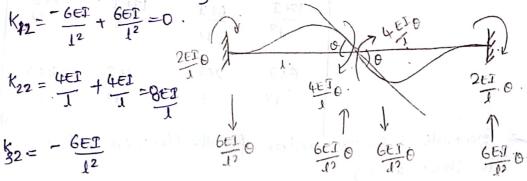
$$[k] = \begin{cases} 4EI & 9EI & 0 \\ 1 & 1 \end{cases}$$

$$[k] = \begin{cases} 2EI & 4EI & 0 \\ 1 & 1 \end{cases}$$

-> Develop or generate stiffners matria of the beam Shown in the fig. w.r.t the 4 DOF.

As, DOF = 4 Bize of stiffness EI = Constant.

matria 'u 4x4.

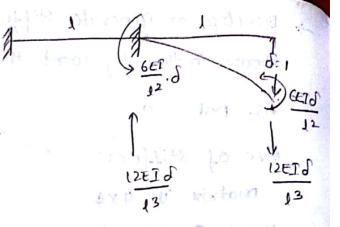

Step 1: To get the fut column of stiffners matrix. Apply unit diplacement along the coordinate 1.

$$k_{\parallel} = \frac{12E1}{13} + \frac{12E1}{13}$$

$$k_{21} = \frac{-6ET}{J^2} + \frac{6ET}{J^2}$$
= D. |2EI .8

Step 2: Apply displacement along coordinate 2 to get the Stiffeness along and column.

$$K_{12} = \frac{-6EI}{I^2} + \frac{6EI}{I^2} = 0$$
.


$$K_{42} = \frac{2EI}{I}$$

steps: To get the 3rd column of stiffners matrix Apply unit sotation along coordinate 3.

$$k_{13} = -\frac{12 \text{ FT } d}{13}$$

$$k_{23} = -\frac{6 \text{ FT}}{1^2}$$

$$k_{33} = \frac{12 \text{ FT}}{13}$$

step: 4: Apply unit displacement along boordinate 4 to get the 47th column stiffness matrix.

$$K_{14} = \frac{6EI}{J^2}$$
 $K_{24} = \frac{2EI}{J}$

$$= \frac{1}{\sqrt{12}}$$

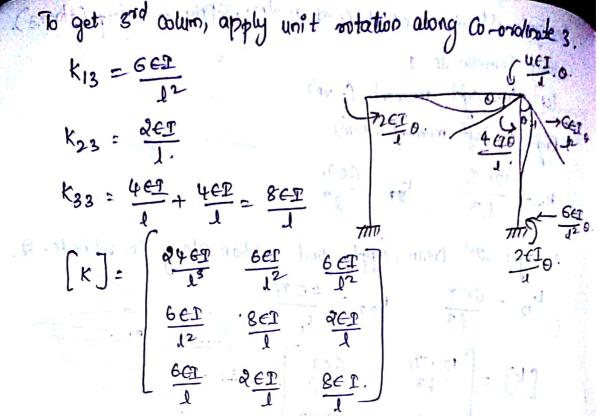
$$= 4EI$$

$$= \frac{1}{\sqrt{13}}$$

$$= \frac{12EI}{\sqrt{13}}$$

$$= \frac{12EI}{\sqrt{13}}$$

$$= \frac{6EI}{\sqrt{12}}$$


$$= \frac{$$

Generale stiffness matria for the structure with co-ordinate as shown in fig.

As the DOF 02 the size of

Hiffness material i 2x2.

To get 1st column of stiffned mator, apply unit dup (thoris) let to night moment (-ve) along Coordinate 1. Right to left moment (+ve) $k_{11} = \frac{12EJ_1}{l_1^3} \qquad k_{21} = \frac{6EJ_1}{l_1^2} \qquad \frac{6EJ_1}{l_1^2}$ To get and colum, apply unit soldion along coordinate-2. $k_{12} = \frac{6 \in \underline{I}}{l_1^2}$ $k_{22} = \frac{4 \in \underline{I}_1}{l_1}$ $\begin{bmatrix} k \end{bmatrix} = \begin{bmatrix} 12 \in I \\ \hline I_1^3 \end{bmatrix} \qquad \begin{array}{c} 6 \in I \\ \hline I_1^2 \end{array} \qquad \begin{array}{c} 4 \in I \\$ Generate the stiffners motion for the structure with the given coordinate system. To get 1st column, apply unit duplacement along the coordinate 1 $k_{11} = \frac{12ET}{1^3} + \frac{12ET}{1^3} = \frac{94ET}{1^3} \rightarrow \frac{5}{1^2} + \frac{12ET}{1^3}$ $k_{a1} = \frac{6eT}{1^2}$ $k_{31} = \frac{6eT}{l^2}$ To got and column, apply unit notation along Coordinate 2 $K_{22} = \frac{4ET}{J} + \frac{4ET}{J} = \frac{8ET}{J}$ $V = \frac{4ET}{J} + \frac{4ET}{J} = \frac{8ET}{J}$ $V = \frac{4ET}{J} + \frac{4ET}{J} = \frac{8ET}{J}$ K32 = 201 101/16

Shown in fig.

To get 1st column, apply unit

EI-const displacement along the Coordinate 1

100 =

What are the steps that involve is analysing the kinematics indétermisate beans. (Stiffners matrix method). Step 1: Evaluate or defermine DKI degree of kinematic indeterminacy) con degree of freedom. step 2: Determine joint loads using fixed end moments using subjected external loading particular beamexep 3: Apply unit diplacement was along the coordinates by that way prepare stiffness matoria. etep 4: Using the known relationship evaluate the unknown value, either rotation con du placement.

step 5: Apply Unknown values and find out the unknown moment using slope deflection equation.

Mab = external load.

& = deflection levels/different levels.

step 6: Evaluate the Support reactions to draw shear -force and Bending moment diagram wing slope deflection

- Analyse the given beam as shown in fig Step 1: Rotation is

possible DOF = 1

com to the company of the c

DR = 0+1+0=1.

System of Coordinate is 1

The size of the stiffness matrix is 1x1 Step 2: Evaluate the point loads.

$$M_{ab} = \frac{-\omega 1^2}{12} = \frac{-20(6)^2}{12} = -60 \text{ tN/m}$$

$$M_{cb} = \frac{col}{8} = 90 \, \text{kn-m}.$$

Pb = Joint load @ B = 60 - 90 = -30.

Step: 3:

$$k_{N} = \frac{467}{6} + \frac{467}{6} = \frac{867}{6} = \frac{467}{3}$$

Step4: K= P

$$\left[\frac{\Phi \in I}{3}\right] \left\{\theta_{b}\right\} = \left\{3\delta\right\}$$

$$B_b = 30 \times \frac{367}{467}$$

$$= \left(\frac{2215}{627}\right) Radians$$

$$8kp5: Mab = Mab + 2 \left(\frac{6P}{1}\right) \left(\frac{20}{6} + \frac{36}{4}\right)$$

$$= -60 + 2 \left(\frac{6P}{6}\right) \left(\frac{22.5}{67}\right) \left(\frac{5}{6} + \frac{36}{4}\right)$$

$$= -60 + 2 \left(\frac{6P}{6}\right) \left(\frac{22.5}{67}\right) \left(\frac{5}{6} + \frac{36}{4}\right)$$

$$= -60 + 2 \left(\frac{6P}{6}\right) \left(\frac{22.5}{67}\right)$$

$$= -52.75 \text{ km.m}$$

$$Mba = Mba + 2 \left(\frac{6P}{2}\right) ba \left(\frac{29.6}{6} + \frac{36}{4}\right)$$

$$= 60 + 2 \left(\frac{6P}{6}\right) + \left(2 \left(\frac{22.5}{61}\right)\right) = 75$$

$$Mbc = -90 + 2 \left(\frac{6P}{6}\right) \left(2 \times \frac{92.5}{67}\right)$$

$$= -75$$

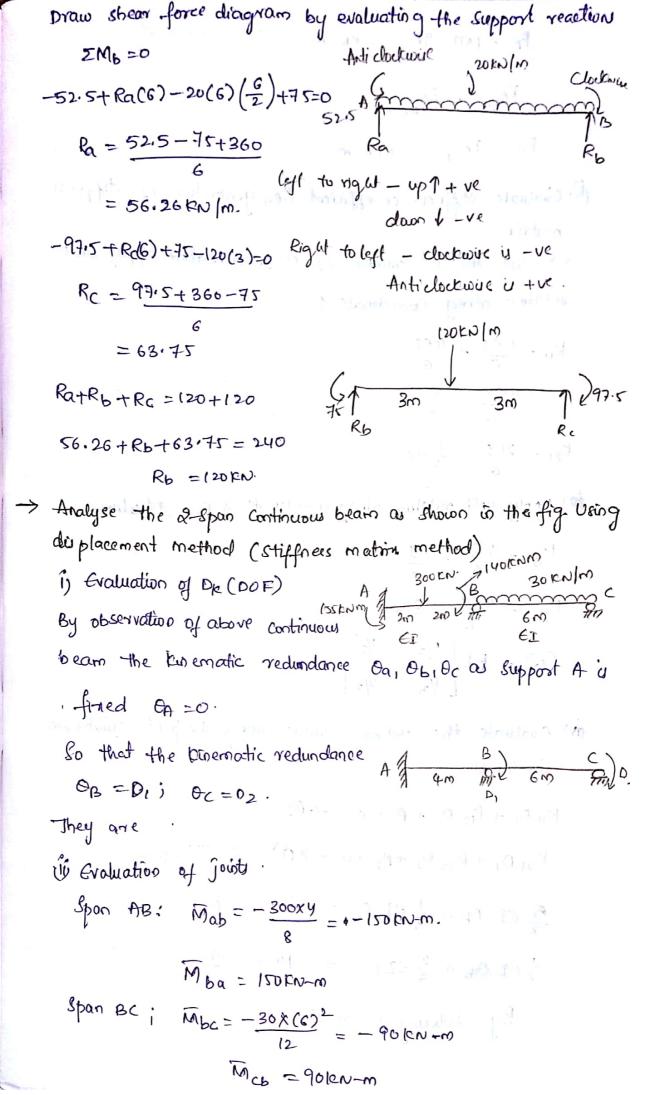
$$Mcb = 90 + 2 \left(\frac{6P}{6}\right) \left(\frac{22.5}{6P}\right)$$

$$= 97.5$$

$$Bonding moment diagram.
$$8pan AB = \frac{\omega I^2}{8} = \frac{20(6)^2}{8} = 90$$

$$8pan BC = \frac{\omega I}{4} = \frac{(200.6)^2}{8} = 90$$

$$8pan BC = \frac{\omega I}{4} = \frac{(200.6)^2}{8} = 180$$

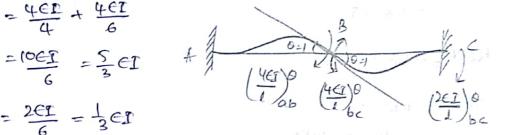

$$Ra.56.24$$

$$56.26$$

$$56.26$$

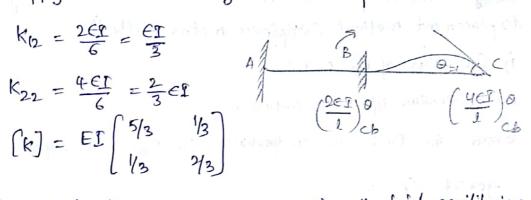
$$56.26$$

$$56.26$$$$


(11) Evaluate stiffners co-efficient i.e., generation of Stiffners matria

-> To get the 1st column of stiffners mation apply unit notation along Coordinate 1.

$$k_{1} = \frac{4 \in \Gamma}{4} + \frac{4 \in \Gamma}{6}$$


$$= \frac{10 \in \Gamma}{6} = \frac{5}{3} \in \Gamma$$

$$k_{21} = \frac{2 \in \Gamma}{6} = \frac{1}{3} \in \Gamma$$

(a) Apply unit notation along wordinate 2 for 2nd whom .

$$K_{12} = \frac{269}{6} = \frac{61}{3}$$
 $K_{22} = \frac{461}{6} = \frac{2}{3} e 1$
 $[k] = EI \begin{bmatrix} 5/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}$

(1) Evaluate the unknown values using the joint equilibrium Condition

$$\begin{array}{l} K_{11}D_{1} + K_{12}D_{2} + P_{1} = 0 \longrightarrow \emptyset \\ K_{21}D_{1} + K_{22}D_{2} + P_{2} = 0 \longrightarrow \emptyset \\ \\ \frac{6}{3} \text{ ef } \theta_{b} * \frac{1}{3} \text{ eI } \theta_{c} = -60 \longrightarrow \emptyset \\ \\ \frac{1}{3} \text{ eI } \theta_{b} + \frac{2}{3} \text{ eI } \theta_{c} = -90 \longrightarrow \emptyset \\ \\ \text{By solving } \mathfrak{O} = 0 \end{array}$$

$$e_{10b} = -10 \Rightarrow 0_{b} = -\frac{10}{e_{2}}$$

 $e_{10c} = -130 \Rightarrow 0_{c} = -130$
 $e_{10c} = -130 \Rightarrow 0_{c} = -130$
 $e_{10c} = -130 \Rightarrow 0_{c} = -130$

deflection method.

$$M_{AB} = M_{AB} + 2 \left(\frac{CT}{l}\right)_{AB} \left[2\theta_{A} + \theta_{B} \pm \frac{3S}{l_{AB}}\right] \left[\frac{1}{l_{AB}} - \frac{1}{l_{AB}}\right] \left[\frac{1}{l_{AB}} - \frac{$$

$$M_{BA} = 150 + \frac{2E\Gamma}{2} \left[2x - \frac{10}{EI} \right] = 140 \text{ kN-m}.$$

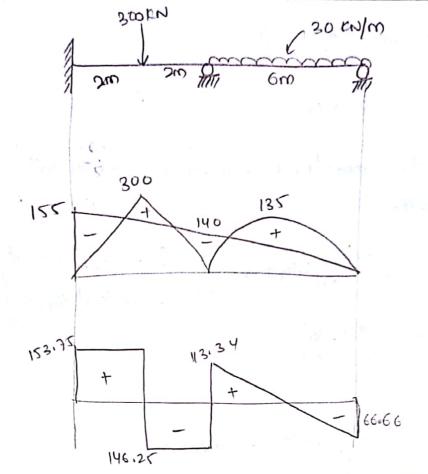
$$M_{BC} = -90 + \frac{2ET}{6} \left(\frac{2x - 10}{EI} \right) - \left(\frac{130}{EI} \right)$$

$$= -90 + \frac{ET}{3} \left(\frac{-20 - 130}{EI} \right)$$

$$= -90 + \frac{ET}{3} \left(\frac{-150}{EI} \right)$$

$$= -140 \text{ kN-m}.$$

$$M_{CB} = M_{Cb} + \frac{2ET}{6} \left[2x - \frac{130}{ET} - \frac{16}{ET} \right]$$


$$= -90 + \frac{ET}{3} \left(-\frac{260 - 10}{ET} \right)$$

$$=90+\left(\frac{-270}{30}\right)=90-90=0$$

Draw the bending moment diagram

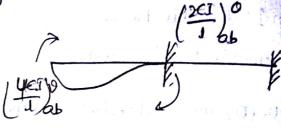
FBD: Span AB =
$$\frac{Wl}{4} = \frac{300 \, \text{KY}}{4} = 300 \, \text{FWM}$$
.

Span BC = $\frac{100 \, \text{L}^2}{8} = \frac{300 \, \text{CG}}{2} = 135 \, \text{ENLM}$

Evaluate the Support reactions to draw SFD.

$$EMb = 0$$
 $135 | 155tn| = 0$
 $135 | 155tn|$

$$R_{c}(6) - 30 \times 6 \times \frac{6}{2} + 135 = 0$$

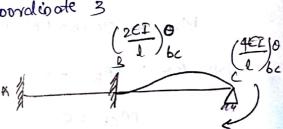

$$R_{c} = 540 - 140 = 66.66 \times 0$$

$$EV = 0$$

-> Analyse the given Continuous bearn using stiffness method (or) displacement method. Step 1: In this beam

Kinematric ordeterminacy is 3. Step 1: In this beam D1, D2, D3 are redendant rotation at A and B respectively A DI B DI COLOR Cirematic redundance à 3, the size of stiffness matrix is 3x3 Step 2: Evaluation of Joint loads. Span AB: $M_{ab} = \frac{-10(5)^2}{12} = -20.83 \text{ kN-m}.$ Mba = 20.83 kn-m Span BC: MBC =0 Mcb =0 be cause no external bads. Joint loads P1 = -20.83, P2 = 20.83 (Mba & Mbc =d) P3 =0 Step 3: Evaluate Stiffner matrix. -> Apply unit rotation along coordinate 1. $K_{\parallel} = \frac{4 \text{ EI}}{2} = 0.8 \text{ EI}$ k21: 2EI = 0.4EI

Apply unit rotation oclong wordinate 1



-Apply unit rotation along Coordinate 2

$$K_{12} = \frac{2e\overline{1}}{5} = 0.4e\overline{1}$$
 $K_{22} = \frac{4e\underline{1}}{5} + \frac{4e\underline{1}}{5} = \frac{8e\overline{1}}{5} = \frac{1.6e\underline{1}}{1.6e\underline{1}}$
 $\frac{4e\overline{1}}{1.6e}$

Apply unit rotation along coordinate 3

Apply unit wholes also posterior of marke of

13ho = 20 The

13800 : Lift - 14

step 4 \rightarrow Evaluate the unknown values i.e., sotations using known relationships or equilibrium conditions. K_1 , $D_1 + K_{12}D_2 + K_{13}D_3 + P_1 = 0$

$$0.8 \in \mathbb{I} \cdot D_1 + 0.4 \in \mathbb{I} D_2 + 0 = 20.83 \rightarrow \mathbb{O}$$

 $K_{21}D_1 + K_{22}D_2 + K_{23}D_3 + P_2 = 0$
 $0.4 \in \mathbb{I} D_1 + 1.6 \in \mathbb{I} D_2 + 0.4 \in \mathbb{I} D_3 = -20.83 \rightarrow \mathbb{O}$

 $D_3 = 0_3 = +\frac{13.01}{6T}$

0 + 0.4 \in 10 \tau 0.8 D_3 = 0 \rightarrow \text{3}.

By Solving 1, 2, and 3.

$$D_1 = \theta_1 = 39.05$$

$$EI$$

$$D_2 = \theta_2 = -26.03$$

$$EI$$

$$D_3 = 0$$

$$C_1 = 39.05$$

$$C_2 = -26.03$$

$$C_3 = 0$$

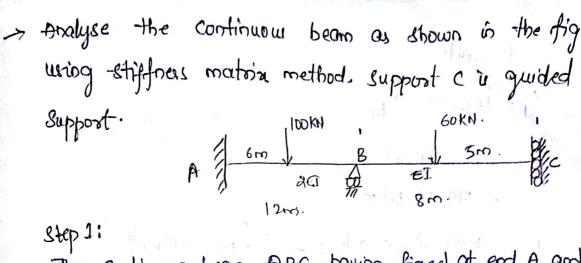
$$C_4 = 0$$

$$C_5 = 0$$

$$C_7 = 0$$

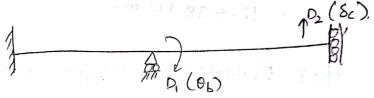
$$C_7$$

Step 5. Evaluate the final moments con suppost moments.


$$M_{ab} = -20.83 + \frac{2EZ}{5} \left[2 \times \frac{39.05}{EZ} - \frac{26.03}{EZ} \right]$$

$$= -20.83 + \frac{2}{5} \left[78.1 - 26.03 \right]$$

$$= -20.83 + 2 \times 52.03$$


$$M_{ba} = 20.83 + \frac{2EI}{5} \left[2x \frac{-26.03}{EI} + \frac{39.05}{EI} \right]$$

$$= 15.626. \text{ KN-m}$$

The Continuous beam ABC having fixed at end A and rollon support at end B as well as quiding support at C.

The Kinematic redendents are rotation at B(Di) and Vertical displacement at C(D2)

Step:2:

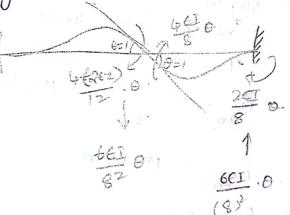
Crawate joint loads

Span AB.

$$m_{ba} = \frac{150 \text{ knm}}{8}$$
 $m_{ba} = \frac{150 \text{ knm}}{8}$
 $m_{ba} = \frac{150 \text{ knm}}{8}$
 $m_{ba} = \frac{120 \text{ knm}}{8}$

$$m_{CD} = \frac{\omega \alpha^{2b}}{l^{2}} = \frac{60 \times 3^{2} \times 5}{8^{2}}$$

$$= 42.18 \text{ kN-m}$$


$$= \frac{60 \times 3}{8} - \frac{1}{8} \left\{ \vec{m}_{bc} + \vec{m}_{ba} \right\} = \frac{60 \times 3}{30.31 + (50)}$$

step 3: Evaluate the stiffness matrin

Apply uni. rotation along coordinate 1

$$K_{11} = \frac{8 \in \mathbb{Z} + 4 \in \mathbb{Z}}{12}$$

$$k_{21} = \frac{6 \in \mathbb{Z}}{64}$$

$$k_{12} = \frac{6 \in \mathbb{I}}{64}$$

$$K_{22} = \frac{12 + 1}{512}$$

Apply the known relationships MINDIT KIZ DZ +PINEDONNIL POR SE SENDE 119 61 · D1 + 6 E1 + 79.69 -> 1) K21 D1 + K22 D2 +P2 = 0. $\frac{\cancel{5}}{64} \stackrel{\text{CI}}{=} D_1 + \frac{12}{2} \cdot \stackrel{\text{CI}}{=} D_2 + 12 \cdot 528 \rightarrow \bigcirc$ 1.16 0.09 D1 = 0b = -30.30 D2 = 82 = -489.84 Evaluate final moments $M_{AB} = M_{ab} + \frac{3er}{l} \left[3\theta_A + \theta_B + \frac{34}{l} \right]$ $M_{AB} = -150 + \frac{20}{12} \left[2 \times \left[\frac{-30.36}{61} + \left[\frac{-489.8}{61} \right] \right] \right]$ MAB = -241.75 kNino. $MBA = m_{ba} + \frac{\partial er}{I} \left[\partial O_B + O_A + \frac{3D}{I} \right]$ = 150 + 2 et [2x[-489.8] + [-30.36] = -18.32 kN-m.

express General Generals stiffered mothers (on stiffered

So Applicated prints addition time set page.

Analyte the nigrid frame as shown in the fig. weing displacement method.

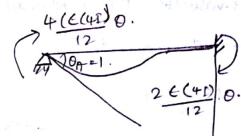
Step:1:

Kinematic redendence.

Analyte the nigrid frame as shown in the fig. weing the state of the

The frame cannot sway as the hinge at 4) prevents the swing so that the beam has a unknown redendate say of and of but occo. Checause no chance of so tation as c is fixed.

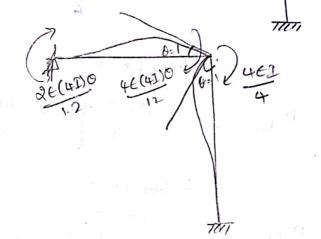
Step 2: Evaluate the joint loads wing the freed end moments


$$m_{qb} = -\frac{40(12)^2}{12} - \frac{270(8)(4)^2}{(12)^2} = -720 \text{ kmm}$$

$$\overline{m}_{bq} = \frac{40(12)^2}{12} + 270(8)^2(u) = 960 \text{ kN-m}.$$

Step: 8: Grenate Grenerate Stiffness matria con stiffness matria coefficients.

Apply the unit rotation along coordinate 2.


$$K_{11} = \frac{4}{3} \in I$$
.
 $K_{21} = \frac{2}{3} \in I$

Step 4. Apply unit solution along the

Coordinate 2.

$$k_{n} = \frac{2}{3}eI$$
 $k_{22} = \frac{4}{3}eI + eI$
 $= \frac{2}{3}eI$

Heps: Evaluate the unknown values using the known relations (equilibrium conditions).

$$\frac{4}{3}$$
 \in 1.01+ $\frac{2}{3}$ \in 1 = 720 $\frac{20}{3}$

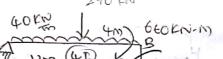
$$k_{21} D_1 + k_{22} D_2 = -P_2$$

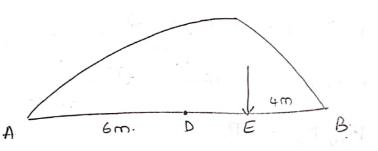
$$\frac{4}{3} \in \mathbb{P} D_1 + \frac{7}{3} \in \mathbb{P} D_2 = -960$$

$$\frac{2}{3} \in \mathbb{Z} \quad D_1 + 7 \in \mathbb{Z} \quad D_2 = -2880 \longrightarrow \mathfrak{D}.$$

$$D_2 = 0_8. = -\frac{660}{CL}$$

Evaluate or determine, the final moments or Support moments.


$$m_{ba} = -960 + \frac{28(41)}{12} \left[2x - \frac{660}{61} + \frac{870}{61} \right]$$


$$M_{bc} = 0.4 \frac{2ET}{4} \left[2x - \frac{660}{62} \right]$$

$$m_{Cb} = D + \frac{2ET}{4} \left[-\frac{660}{ET} \right]$$

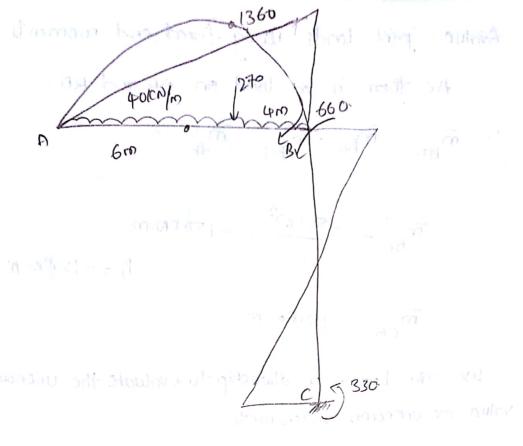
$$= -330 \, ICN - m. A 40 KM 4 m 660 KN - m$$
Draw BM diagram.

Draw BM diagram.

$$P_b = \frac{40 \times 12}{2} + \frac{270 \times 12}{12}$$

$$m_d = (330 \times 6) - 40 \times 6 \times \frac{6}{2}$$

$$= 1980 - 720$$


$$= 1260$$

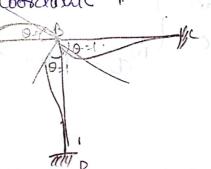
Ra = 40 x12 + 270 x4

= 240+90 = 330

$$\frac{2}{m_e} = (420x4) - 40x4x4$$

$$= 1680 - 320$$

> Draw the BM dia as shown in the fig. use Stystem Stiffners approach. The frame is built in A,B,C and it has a stiff joint at B. It covers a uniformly distributed tood of intensity 50 km/m on BC and each Comemodic redendency and bornes of the struct Of uniform C/s.


for the Structure U 1 and white 300 300 (ED) court gold it à at joint B.

0a = 0c = 0d =0

(As they are built in fined)

step2: Evaluate stiffness motors coefficient. Apply unit sotation along joint B 9.e., Coosdinate 1

$$K_{11} = \frac{(A-B)}{2}(1) + \frac{4-EI}{6} + \frac{4-EI}{3}$$

Evalue joint loads using fixed end moments.

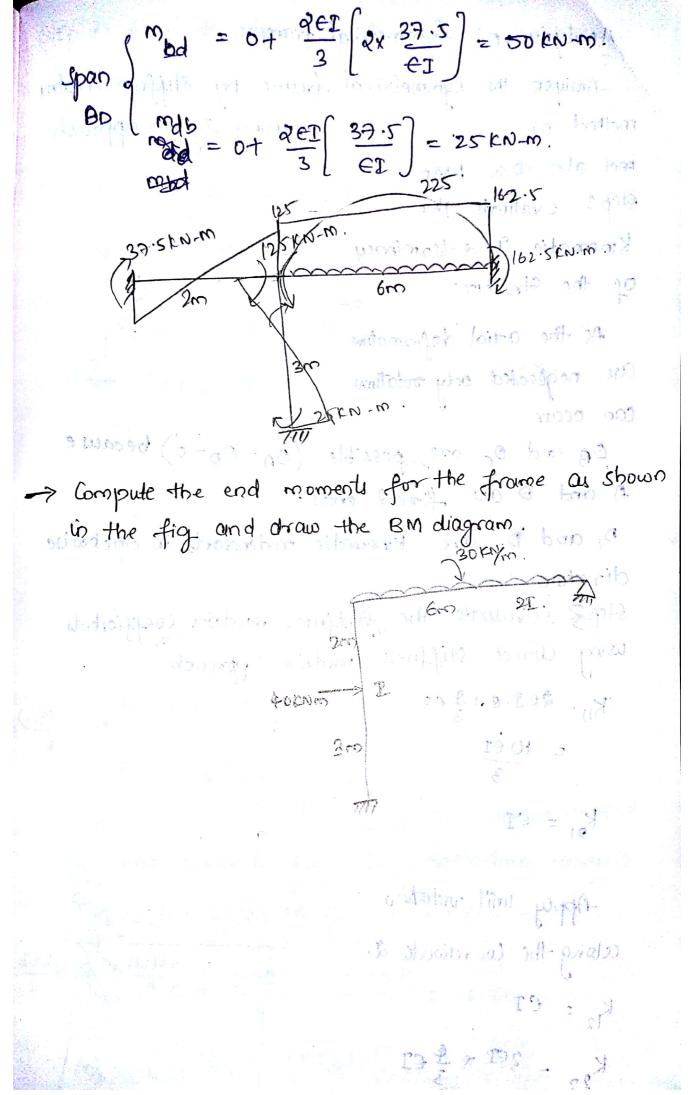
As there is no load on AB and BD

$$m_{bc} = \frac{-50(6)^2}{12} = -150 \text{ kN-m}.$$

use the known relationship to evaluate the unknown values or unknown redendants.

Evaluate the final moments con Support moments using Stope deflection equations

$$span_{ab} = 0 + \frac{3 + 5}{2} \left[0.3 + 5 \right] = 3 + 5 \text{ kn-m.}$$


$$\frac{\text{Span}}{\text{Mpq}} = 0 + \frac{367}{2} \left[2x \frac{39.5}{61} + 0 \right] = 75 \text{ FN} \text{ m}$$

Span
$$\int_{C_{0}}^{C_{0}} m_{bc} = -150 + \frac{261}{6} \left[\frac{3}{2} \times \frac{39.5}{62} + 0 \right] = -125 \text{ kin-m}$$

BC $\int_{C_{0}}^{C_{0}} m_{bc} = -150 + \frac{261}{6} \left[\frac{39.5}{61} \right] = 162.5 \text{ kin-m}$

E E E

1000

Analysiu of Symmetrical frances:

Aralyse the symmetrical france by stiffners making metrod or using system approach

meet allow obtain BMD.

step 1: Evaluate the B 2m

Kinematic Indeterminacy
of the Structure.

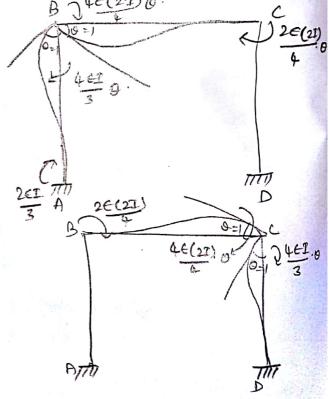
Our neglected, only rotation min

y Am D Am D aw m Am D m D m

A) and D are fined ends.

D, and D2 are kinematic redendants in clockwise direction.

Step 3: Evaluate the stiffness matria coefficients using direct stiffness matria approach.


By 4012200.

Apply unit rotation 2017 An along the Courdinate a.

$$K_{12} = eT$$

$$K_{22} = {}^{2eT} + {}^{4}_{3}eT$$

$$= 10 + T$$

step 2: Evaluate joint loach. wap = wpor = 0. $\overline{m}_{bc} = -\frac{wl}{8} = -\frac{60x4}{8} = -30tNm$ mcb = + 30kN-10 $P_1 = -30 \, \text{kN-m}, P_2 = 30 \, \text{kN-m}.$ Step 4: Apply equilibrium conditions at joints. K11, D1+-K12, D2+ P1=0 10 ∈ Po,+ ∈I. D2 = 30 → 0. · K21 DI+ \$22 02 = P2 =0 8. €2. D, + 3.33. ET.D2 = -30 →0. By Solving O, 20 D1 = 12-87 $D_2 = 0_c = -\frac{12.87}{CP}$ step 5. Evaluate or determine the support moments or Joint moments using slope deflection formula. $m_{ab} = 0 + \frac{2 \in \mathbb{I}}{3} \left| \frac{12.87}{62} \right| = 8.58 \text{ kN-m}$ $m_{ba} = 0 + \frac{2EP}{3} \left[2x \frac{12.87}{EP} \right] = 17.16 \text{ RN-m}.$

 $m_{bc} = -30 + \frac{2 \cdot \text{CDP}}{4} \left[2 \times \frac{12 \cdot 87}{22} + \frac{12 \cdot 87}{61} \right] = -17.16 \text{ mg}$

$$m_{Cb} = 30 + 2 \underbrace{e(2.7)}_{b} \left(2x \underbrace{e_{1}}_{e_{1}} \right)^{2.87} + \underbrace{12.87}_{e_{1}}_{e_{1}} \right)$$

$$= 17.16 \text{ kN -m}.$$

$$m_{Cd} = 0 + \underbrace{2e_{1}}_{3} \left(-2x \underbrace{12.672}_{e_{1}} \right)^{2} = -17.16 \text{ kN-m}.$$

$$m_{dc} = 0 + \underbrace{2e_{1}}_{3} \left(-2x \underbrace{12.672}_{e_{1}} \right)^{2} = -8.58 \text{ kN-m}.$$

$$= -8.58 \text{ kN-m}.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

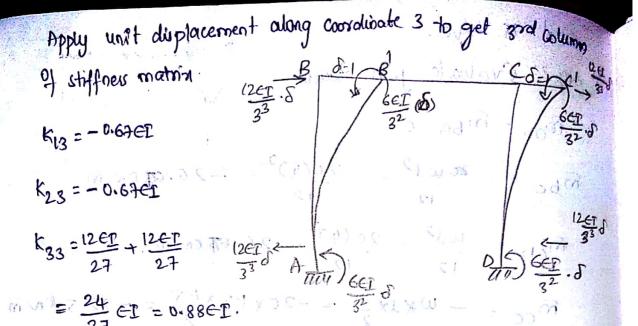
$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$

$$17.16.$$


$$17.$$

tinematic redards OBSIOC are sotations is clockwise

Scanned by CamScanner

and a tre. step 2: Evaluate joint loads. 1000 = 1000 = 00 $m_{bc} = \frac{1}{20} \frac{ml^2}{12} = -\frac{20(4)^2}{12} = -26.64 \text{ cm.m}$ $\overline{m}_{cb} = \frac{\omega J^2}{12} = \frac{20(4)^2}{12} = 26.64 \text{ rn/m}$ mce = - wx1x1 = -20x1.5x1.5 = -22.5 knm. P1 = -26.64 KN. P2 = 26.67 [N-m] P3 = 0. Step 3. Evaluate the stiffners matrix coefficients uning To generate the Et column of Stiffners motors apply unit solution along the coordinate 1. 20(21) $k_{11} = 261 + 461 = 1067$ $k_{31} = -\frac{2}{3}\epsilon_{1} = -0.64\epsilon_{1}$ To get the and column of stiffness matrix apply unit sociation along Coordinate 2 K12 = E1. K22 = 282+4 61 = loc1 = 3.3362 k32 = -2 EI = -0.67 EI

Scanned by CamScanner

Evaluate the unknown values using equilibrium condition $K_{11} D_1 + K_{12} D_2 + K_{13} D_3 + P_1 = 0$

$$0_{1} = 8.59$$
 $0_{1} = 0_{2} = 4.62$
 $0_{3} = -3.97$

$$D_{1} = O_{b} = \frac{10.01}{61}$$
 $D_{2} = O_{C} = -3.21$

$$D_{2} = O_{C} = -3.21$$

$$E_{T} = 0$$

$$D_{3} = S = \frac{5.13}{E_{T}} \quad \text{production}$$

$$M_{ab} = 0 + \frac{2ET}{3} \left[0 + \frac{10}{ET} - \frac{3(51)}{ET(37)} \right] = +3.53 \text{ kn-m}.$$

$$M_{ba} = 0 + \frac{2EI}{3} \left[2 \times \frac{10}{EI} - \frac{3 \times 5 \cdot 11}{3 (EI)} \right] = 9.9 \times 10^{-10}$$

$$M_{bc} = -26.67 + \frac{2e(27)}{4} \left(\frac{2x.10}{eT} - \frac{3.22}{eT} \right) + 2e(27) \left(\frac{2x.10}{eT} - \frac{3.22}{eT} \right) + 2e(2$$

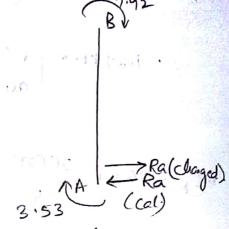
$$M_{CB} = 26.67 + \frac{2E(2I)}{4} \left[2x - \frac{3.22}{EI} + \frac{10}{EI} \right]$$

= 30.23 KN-m.

$$M_{\text{cd}} = 0 + \frac{2\epsilon_{\text{I}}}{3} \left[2\left(-\frac{3\cdot22}{\epsilon_{\text{I}}}\right) + 0 - \frac{3x5\cdot11}{\epsilon_{\text{I}}} \right]$$

$$= -\frac{7}{3}\cdot7\,\text{kN-m}$$

$$M_{dc} = 0 + \frac{2EI}{3} \left[0 - \frac{3.22}{EI} - \frac{3X5.11}{3EI} \right]$$


= -5.55kN-m,

Bending moment 9.89 9.89 9.89 9.92 9.92 9.92 9.92 9.92 9.92 9.92 9.92 9.92 9.92 9.92 9.92 9.92 9.92 9.92 9.92

Shear Evaluate horizontal reactions at A.

$$Ra = -9.92 - 3.63$$

$$Ra = -4.48 \text{ EN}$$

-> Draw the BMD and the elastic curve for the frame

tioematic redundancy 50km B months

of the given frame.

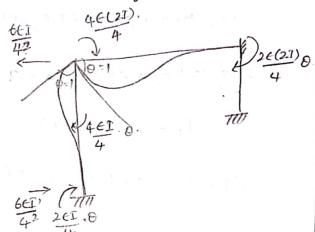
D₁, D₂, D₃ as shown in the

the fig.

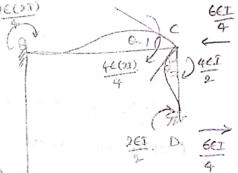
A

lize of stiffness matria 3×3.

Step 2:

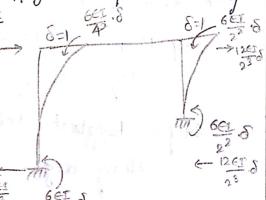

Evaluate the joint bade using fined end moment

$$M_{bc} = -\frac{wl^2}{12} = -\frac{30(u)^2}{12}$$


joint loads. from fixed end moments.

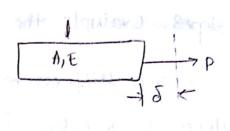
-> Evaluate the stiffners martin (SM).

To get the 1st column of sm apply unit votation


To get the and column of stiffners metrin apply unit rotation along coordinate a.

To get the 3rd column of SM apply unit displacement along Coordinate 3.

$$k_{13} = \frac{-6er}{4^2} = 0.345er$$


$$k_{33} = \frac{12EI}{4^3} + \frac{12EI}{2^3} = 1.687EI$$
.

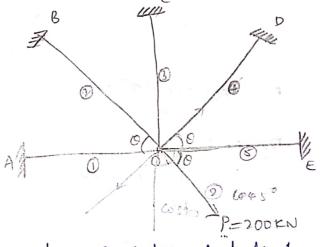
Evaluate the unknown values using equilibrium agric KIIDI+ KI2D2+KI3D3+P1=0 ->0 3CI DI+ 61 D2 + 0.3+5EI D3 += ->0 $K_{21} D_1 + K_{22} D_2 + K_{23} D_3 + P_2 = 0 \rightarrow ②$ ELDIT 4EID, + 1.5EI.B3= $k_{31}D_1 + k_{32}D_2 + k_{33}D_3 + P_3 = 0 \rightarrow 3$ -0.375CI D1-1.5CI D2 +1.687EI D3= 3EI (-40) + EI (40) + 0.375 (50) +P, =0. P1 = +61.25 EI EI (-40)+ 4EI (40) -1.5EI (50) +P2 =0 P2 = -45 EI. -0.375EI (-40)-1.5EI (40)+1.687EI (50)+B=0 P3 = -39.35 EL. Analysis of trusses using stiffners matrix Displacement method. -> What are the steps involved to analyse stiffness motion method: Step 1'. Evaluate Kinematic indeterminary or provide degrees of freedom where possible. step 2: Evaluat joint loads using unit displacements along degrees of freedom

$$S = \frac{P!}{AE}$$

$$1 = \frac{P!}{AE} = \frac{\kappa^2}{\kappa} \cdot \frac{N}{\kappa^2}$$

P = AE (AE = nigidity modulus). AE arial stiffness.

Step 3: Evaluate unknown values i.e., degree of freedom using the equilibraium equation.

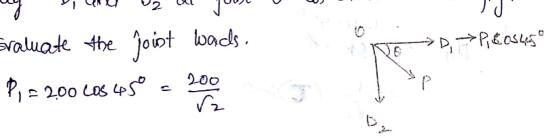

Step 4: Evaluate the unknown forces to the members due to loading.

Mole: Analyse the given touss as shown in fig using stiffness matrix method.

The anial load. P= 200 KN.

and 0 = 45°

The anial stiffness AT



The above system has a independent displacement Say D, and D2 at joint 'O' as shown in the fig.

Evaluate the joint wads.

$$P_1 = 2.00 \text{ LOS } 45^\circ = \frac{200}{\sqrt{2}}$$

$$P_2 = 200 \sin 45^\circ = \frac{200}{\sqrt{2}}$$

steps 3: Evaluate the stiffness matrix coefficients. To get stiffness matrix, Apply unit diplacement along on and on Successively at 'O'. Apply unit diplacement along D, Ci.e., along coordinate 1) ("if the displacement induces tension in the member then it is positive and if it is Compression then 14 is negative. The displacements are as shown is the fig. D2 = 1 cos 45° = 1 (T) (+ve) b3 = cos 90°

DS =- 1 (10) (ANC)

The Coefficients of matria in 1st column
$$K_{11} = \frac{AE}{J} \left[+1 + \frac{1}{\sqrt{2}} \cos 45 + \frac{1}{\sqrt{2}} \cos 45^{\circ} + 1 \right]$$

$$= \frac{AE}{J} \left[1 + \frac{1}{\sqrt{2}} x + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} x + \frac{1}{\sqrt{2}} \right] = \frac{3AE}{J}.$$

$$K_{21} = \frac{AE}{J} \left[\frac{0+1}{\sqrt{2}} \cdot 8 \sin 45^{\circ} + \frac{1}{\sqrt{2}} \cdot 8 \sin 45^{\circ} \right]$$

$$K_{21} = \frac{AE}{I} \begin{bmatrix} 0 + 1 & 8 \cos 45 + 04 \\ \sqrt{2} & 8 \cos 45 \end{bmatrix}$$

$$= \frac{AE}{I} \begin{bmatrix} 0 + 1 & 8 \cos 45 \end{bmatrix}$$

Apply unit displacement Nertically along coordinate &

$$\begin{bmatrix} K \end{bmatrix} = \frac{AE}{I} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

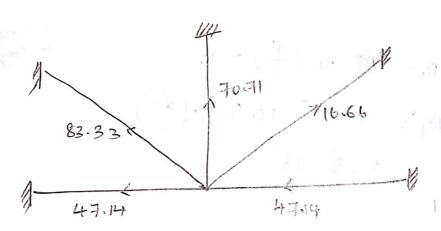
Note: In pip jointed frames, the boads aids at joints (panel joints) and hence Pi -ve. so that the relationship between the stiffners

$$3 \frac{AE}{J} \cdot D_{1} = \frac{200}{\sqrt{2}} \times \frac{1}{3AE}$$

$$D_{1} = \frac{200}{\sqrt{2}} \times \frac{1}{3AE}$$

$$= \frac{47 \cdot 14}{AE}$$

$$D_{2} = \frac{200}{\sqrt{2}} \times \frac{1}{2AE}$$


$$= \frac{70.711}{AE}$$

-> list out memberal forces due to unit diplacements along the redundant directions (Kmd)

$$k_{md} = Ae \begin{cases} 0 & 0 \\ t_{2} & \sqrt{2} \\ 0 & 1 \\ -\frac{1}{\sqrt{2}} & t_{2} \\ -1 & 0 \end{cases}$$

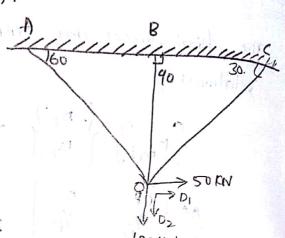
The fixal forces are calculated using the load relationship

$$\begin{cases} F_{md} \\ F_{md} \\$$

The projocited thus as shown in fig. by Stiffness method when arrival stiffness of the nonembers like (AE) = 20 KN/mm, (AE) = 60 kn/mm

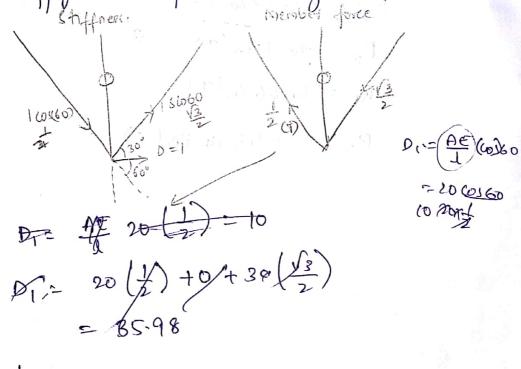
and (At) = 30 KN/mm.

Step 1: Assume the


redundancy at '0'

joint loads

1


P1 = 50 KN.

P2 = 100 KN.

Evaluate memberal forces and stiffners matria coefficients with uniform displacement along Coordinate 1 as well as 2.

Apply unit displacement along coordinate 1.

$$D_{1} = 20 \cdot \left(\frac{1}{2}\right) = 10$$

$$D_{2} = 0$$

$$D_{3} = 30 \cdot \frac{\sqrt{3}}{2} = 25.98$$

$$K_{11} = \left(\frac{1}{2} \cdot \frac{1}{2}\right) 20 + 0 + \left(\frac{\sqrt{3}}{2} \times 60130^{\circ}\right) 30$$

$$= 5 + \frac{3}{4} \times 30$$

$$= 27.5 \text{ EN}$$

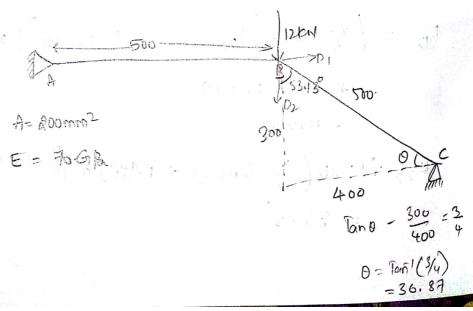
$$K_{21} = \left(\frac{1}{2} \cdot \frac{5060}{20}\right) 20 - \left(\frac{\sqrt{3}}{2} \cdot \frac{56}{30} \cdot \frac{30^{\circ}}{30}\right) 30$$

$$= \frac{5}{4} \times \frac{100}{2} - 4.33 \times \text{N}$$

$$\text{May apply unit displacements along the coordinate of the second forces}$$

$$Striffner = \frac{1}{2} \cdot \frac{100}{2} \cdot \frac$$

z 82.5


$$\begin{bmatrix} 24.5 & -4.33 \\ -4.33 & 82.5 \end{bmatrix} \begin{bmatrix} 01 \\ 02 \end{bmatrix} = \begin{bmatrix} 50 \\ 100 \end{bmatrix}$$

$$D_1 = 2.02$$
 of $D_2 = 1.31$ $V = 0.000$

For the two bours tousses as shown in fig.

determine the forces in the members. Take young's

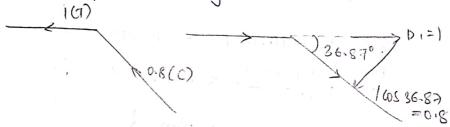
modulus E = 70 GiPa, C/S area of members = 200 mm²

Scanned by CamScanner

Glephial stiffness of the member.

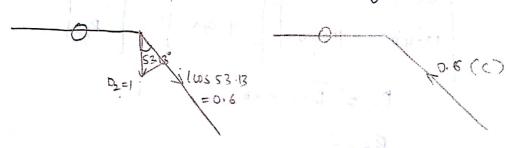
$$Par\left(\frac{AE}{T}\right) = \frac{200 \times 70 \times 10^9}{10^3 \times 10^6} = \frac{1690 \times 70 \times 10^9}{10^3 \times 10^6} = \frac{1600 \times 70 \times 10^9}{2000 \times 10^9 \times 10^9} = \frac{1690 \times 10^9 \times 10$$

Hence the size of stiffness matrix is 2x2 stepa: Calculate the joints


$$P_{2} = 0 \text{ kN}.$$

$$P_{2} = 12 \text{ kN}$$

$$P = \begin{bmatrix} 0 \\ 12 \end{bmatrix}$$


Sty 3: Evaluate the stiffness matrix coefficients and memberal forces.

Apply unit displacement along the Coordinate 1.

$$K_{21} = 0 + (0.8 \times \sin 36.87) \times 28$$

= 13.44 KN.

Similarly apply unit displacement along coordinate a.

$$K_{12} = 0 + (0.6 \times 10.53.13) 28$$

= 13.44

$$K_{22} = 0 + (0.6 \text{ ws } 53.13) 28$$

$$= 10.08$$

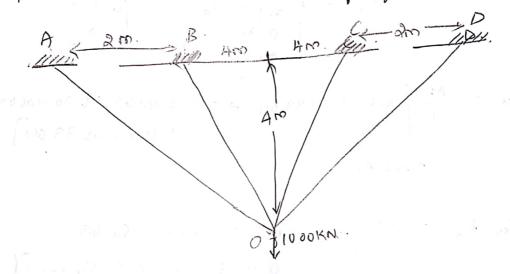
$$[K] = \begin{cases} 45.92 & 13.44 \\ 13.44 & 10.08 \end{cases}$$

Step: 4: Calculate the redundant forces using Joint equilibrium conditions.

13.44 D₁ + 10.08 D₂ = 12 kN.
$$\rightarrow \bigcirc$$

By Solving ① S(\bigcirc)
D₁ = -0.57 mm. (\leftarrow)
D₂ = 1.95 mm.

Evaluate the forces in the members using the known relationships.


$$\begin{bmatrix} K_{rnd} \end{bmatrix} = \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}$$

$$\begin{bmatrix}
 45.92 & 13.44 \\
 1844 & 10.08 \\
 \hline
 & 10.08 \\
 \hline
 & 1.95
 \end{bmatrix} =
 \begin{bmatrix}
 P_1 \\
 P_2
 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
-0.8 & -0.6
\end{bmatrix}
\begin{bmatrix}
-0.57
\end{bmatrix}
=
\begin{bmatrix}
f_1 \\
f_2
\end{bmatrix}$$

$$f_1 = -0.714 \text{ KN (C)}$$

Evaluate the forces in the members 0A,0B,0C, on using stiffeness matrix method. The C/s area of all members are constant and youngs modules also.

-> Explain the Coordinate System.

$$\Rightarrow 1$$
 $\Rightarrow 1$
 $\Rightarrow 1$

Consider a bar AB. of length 'L'. Inetal is position at A and free to move at B. If a force acts at B as shown in the fig. above.

Hinge A will move develop a force 'P' towards left of 'A', i.e., ban AB will stretch by value of & S.

B' will move towards night by 'PI'

In shortcut the stiffness of the member is arranged from S. i.e.,

$$K = \frac{P}{S} = \frac{AE}{I}$$
 \rightarrow stiffner matrin

$$f = \frac{1}{AE} = \frac{S}{R} \rightarrow flexibility$$

A
$$P_{i}=1/P_{i}=1 \Rightarrow stiffers$$

$$P_{i}=1/P_{i}=1 \Rightarrow stiffers$$

$$P_{i}=1/P_{i}=1 \Rightarrow stiffers$$

$$P_{i}=1/P_{i}=1 \Rightarrow force$$

$$A_{i}\in A_{i}$$

The arrow at B defines the coordinates and it indicates the point and the direction either the

force 'P' or the displacement 'S' based on flexibility or stiffness are defined. which

- Inlhat is transformation matrin con rotation matrin

-> different types of Coordinate systems

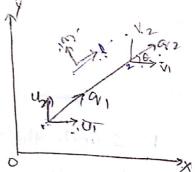
O Global Coordinate system/ Cartesian Coordinate System.

Delocal coordinate system; may hove (1, y) and also → taking only end on aline as engin.

3 Natural Coordinate System. 8-8

-> taking an ongo inside the specified line.

F-Thi -> horizontal axis


n -> eta -> vertical ani

To -> Grita -> for victoral/2 orai.

Transformation matrix.

let us consider a truss element as shown is fig 9, and 9,2 are the diplacements of the node 1 and nodes for end 1 and end 2.

1,7= Global coordinates.

In the initial coordinate system the displacements are (U11V1) and (U2, V2) at no de 1 &2 resp.

$$colo = x/u,$$

$$\begin{cases} 911 \\ 92 \end{cases} = \begin{cases} 2 \\ 0 \end{cases} = (2 \\ 0 \end{cases} =$$

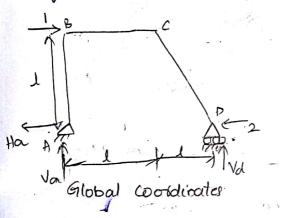

The post transformation matrix is used to consent the local Co-orderate system into global wordinate system.

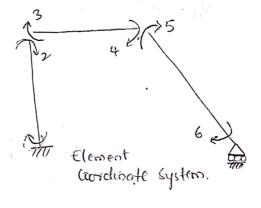
Note:

This transformation matrin is also used for displacements.

-> Irrespective of

> Explain the transformation of Courdinates.


For 1 and the Same structure we can choose the coordinate System most suited to aim solution in problem solving, "it is useful to define a coordinate system dealing with the entire structure, Coordinates are assigned to locations he, especially at nodes or joints, where, the local are likely to be act. This kind of Coordinates are called system of Coordinates


In Global coordinates force and displacement are denoted as if and u. where as in element coordinates they are P and S. this of I are taken because it indicates column matrix.

The two coordinate system differed only by orientation. In present case, the two sets of coordinates appear to be unrelated but all these say relate to the structure.

let us derive a transformation matrix such as $\{P\} = [b] \{F\}$

Gieneraite the transformatio matrial b' for the given coordinate system.

By the observations of the both coordinate system. The size of transformation matrin is 6x2.

To get the 1st column of transformation matrix apply unit force along coordinate 1.

when fi=1 then f2=0.

ZV =0

Va+Vd =0

$$V_{a} = -V_{d} \rightarrow 0$$

$$\Sigma H = 0$$

$$-H_{a} + 1 = 0$$

$$-H_{a} = -1$$

$$H_{a} = 1$$

$$\Sigma M_{d} = 0$$

$$V_{a}(21) + 1(1) = 0$$

$$V_{a} = -\frac{1}{2} \qquad V_{d} = \frac{1}{2} \qquad V_{d}$$

By the observation of the both conduct system the size of translation matrix is the southing order of translation matrix and the standard or southing standard or southing standards of the stand

281948

with the restorm the deval and there is Generate a flexibility matrin for the given co-ordinates

To calculate or determine the first column of flexibility matrix.

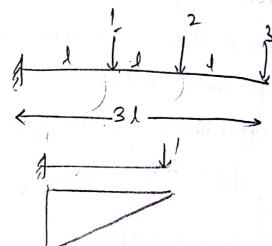
Apply unit force along co-ordinate 1

$$f_{11} = \frac{AX}{EI}$$

$$f_{11} = \left\{ \frac{1}{2} \times 1 \times 1 \right\} \times \frac{2}{3} \cdot \left[\frac{1}{\sqrt{2}} \right]$$

$$f_{11} = \left\{ \frac{1}{2} \times 1 \times 1 \right\} \times \frac{2}{3} \cdot \left[\frac{1}{\sqrt{2}} \right]$$

$$f_{11} = \frac{1^2}{2cz} \times \frac{2}{3} 1$$


Apply unit moment along coordinate @

$$f_{12} = \frac{l^2}{2CL}$$

$$[f] = \frac{1}{cI} \begin{bmatrix} 1\frac{3}{2} & 1\frac{7}{2} \\ 1\frac{7}{2} & 1 \end{bmatrix}$$

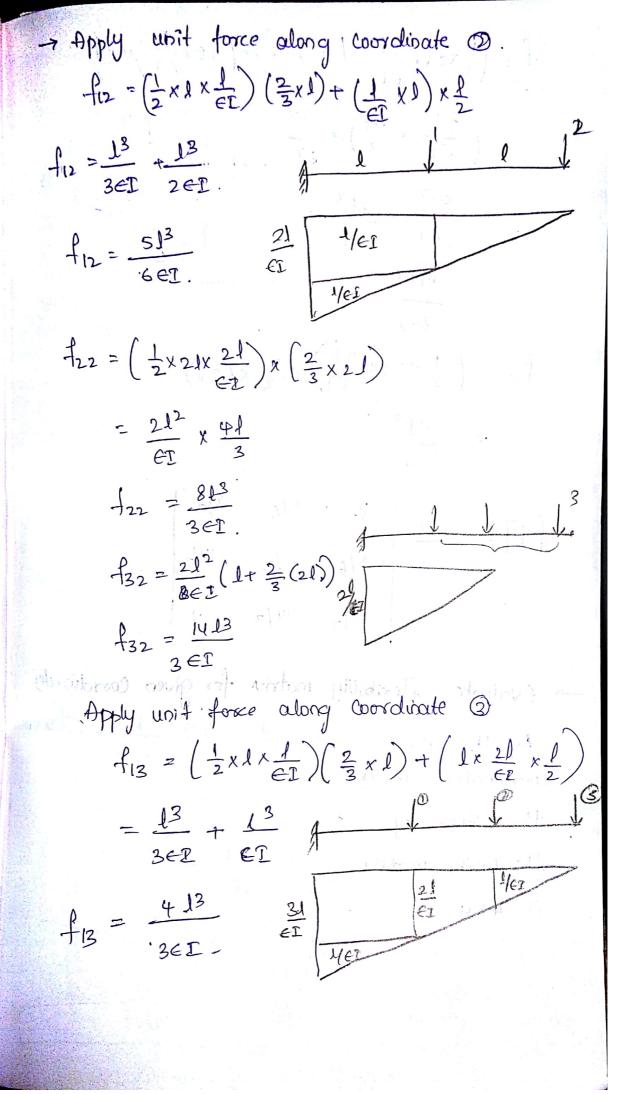
Evaluate the flexibility matrin for the given Coordinates. System.

As the given
Coordinates are A
3' the size of
flexibility matrix
a 3x3.

Toppy unit force along coordinate O

for - AX

EI


$$= \left\{ \frac{\frac{1}{2} \times 1 \times 1}{2 \times 1} \times \frac{2}{3} \right\}.$$

$$f_{21} = \frac{J^2}{2e_1^2} \times \left(J + \frac{2}{3} \times J\right)$$
$$= \frac{J^2}{2e_1^2} \times \left(\frac{5J}{3}\right)$$

$$=\frac{l^2}{2el} \times \left(\frac{sl}{3}\right)$$

$$f_{31} = \frac{12}{2CP} \times (21 + \frac{2}{3} \times 1)$$

$$\frac{81^3}{6e2} = \frac{41^3}{3e1}$$

$$f_{23} = \left(\frac{1}{2} \times 21 \times \frac{21}{61}\right) \left(\frac{2}{3} \times 21\right) + \left(21 \times \frac{1}{61}\right) \times \frac{21}{2}$$

$$= \left(\frac{20^{2}}{62} \times \frac{11}{3}\right) + \frac{20^{3}}{61}$$

$$= \frac{81^{2}}{361} + \frac{20^{3}}{61}$$

$$= \frac{11^{3}}{361}$$

$$= \frac{11^{3}}{361}$$

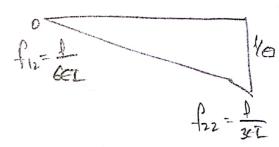
$$= \frac{11^{3}}{61} \times \frac{31}{61} \times \frac{31}{61} \times \frac{31}{61} \times \frac{31}{61}$$

$$= \frac{11^{3}}{61} \times \frac{31}{61} \times \frac{31}{61}$$

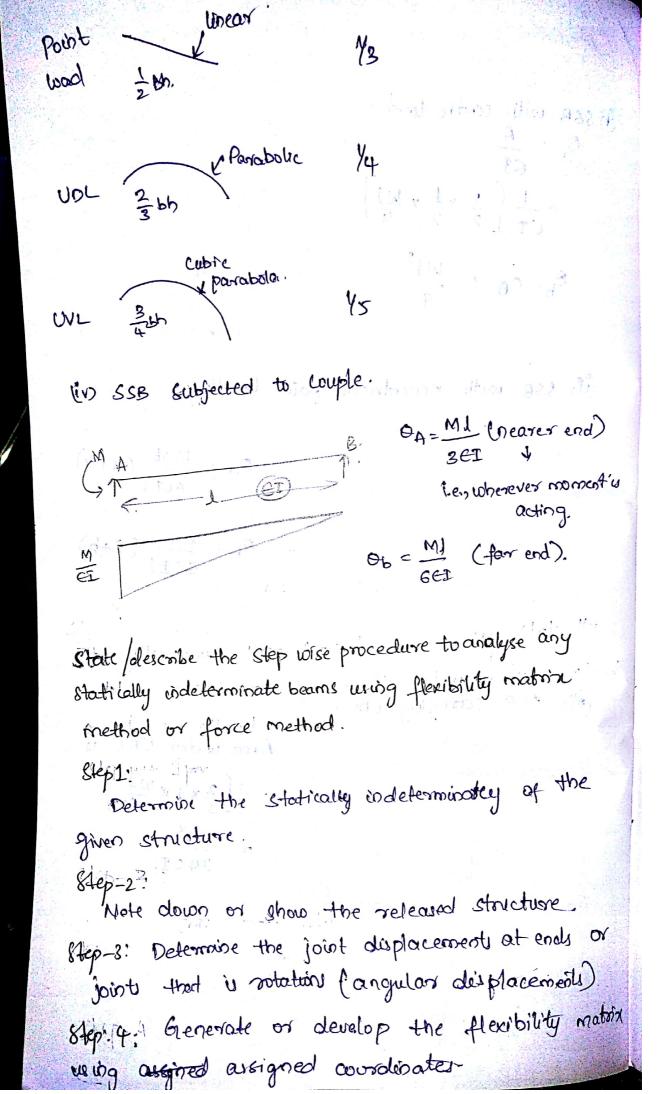
- g Grenerate or develop the flexibility matrix for -Plexibility Coefficient for the given coordinate system The given toordinates are 2. 80 that the Size of the flexibility EI= const. matrin is 2x2. the flexibility matrix will be obtained by applying, unit force along each coordinate, one at time and obtaining the displacement. To get 1st column of flexibility matria apply unit moment along coordinate (). EV=0 杂为 RatRb =0 Ra = -RbEMB 20 Rax1 +1 =0 load diagram -1x1+1=0-Ra = -// Rb= 1/1. To get flexibility matrin coefficient evaluate Conjugate shear along the coordinate. ZV=0 $V_a + V_b = \frac{1}{2} \times 1 \times \frac{1}{er}$ $=\frac{1^2}{2EI}$

$$V_{\alpha x}l - \frac{1}{2el} \propto \frac{2}{3}(l) = 0.$$

$$V_{\alpha x} l - \frac{l^2}{3EI} = 0$$


$$V_5 = \frac{1}{2EI} - \frac{1}{3EI}$$

Note:


In any case a unit moment is applied at any support on any joint the flexibility coefficient act near end is 1/3EI and for apposite end is 1/6EI.

-> Similarly apply unit moment along coordinate @

Evaluation of general . formulae for displacement Calculation in SSB with centre load. $Q_{\alpha} = \frac{A}{CT}$ - 1 (1 x 1 x 14) $\theta_{b} = \theta \alpha = \frac{Wl^2}{4}$ is sss with ecceptoical point boding $O_{\alpha} = \frac{\omega_{\alpha b}}{6671} (1+\alpha)$ Ob = wab (1+6). B (Mi) SSB carrying UDL. Area under UDL is of tim/ a 2 W13 12 00MG stop 3: Determine the fait diplocan Colomorphy and production of the daid State philips of the parties of Marining of the ustrationed bearptices barried piece

Note: The size of flexibility matrin always depends on statical indeterminary steps. Use the greneral equation con notation for formula to calculate redundant forces. [8][P] = 983 - 989, where & = original displacements 8, = displacements caused due to external loads Step6: Evaluate the Subsidery quantities iren Support reaction. -> Evaluate the given beam or analyse the Continuous beam using force method. Statical indeterminary 16km 15m 95 5m 95 10m 2/9+1+17 - 2/2 10m 10m. 2(2+41)-2 2 EL 3 / EL =11) Here 2' As the no. of redundants are 2 then size of flexibility matrin u ara Anstead of finicity we consider released end moments and therefore Supporter moments and the therefore induced.

Riand Rz are the redundants at supports

b and B.

Scanned by CamScanner

step 3: Determine jaint duplacements under enternel loading.

at A
$$Sl_1 = \theta_a = \frac{Wl^3}{24(3)} = \frac{16X10^3}{24(3)} = \frac{222.22}{61}$$

$$Sl_2 = \frac{W(l_{ab})^3}{24(EZ)_{ab}} + \frac{Wl^2}{16EZ}$$

$$\theta_b = \frac{322.22}{\text{CI}}$$

Step 94 Evaluate or develop or generate the flexibility

Apply unit force moment along coordinate 1
$$\frac{1}{3} = \frac{(10b)^3}{3(EE)_{ab}} = \frac{10^3}{9.62}$$
The second state of the second second

Apply unit force along coordinate 2.

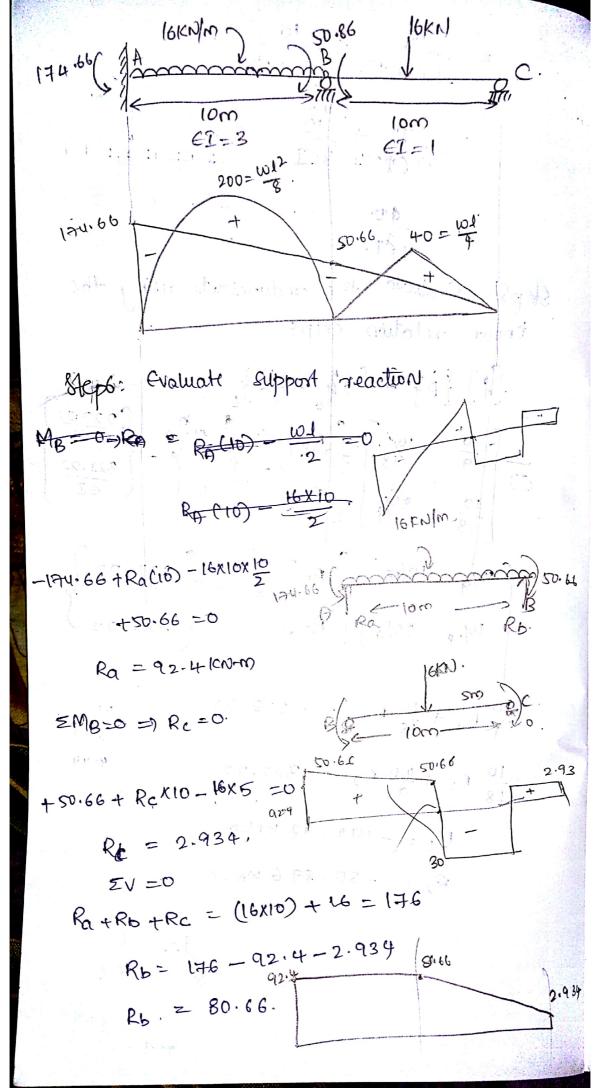
$$f_{12} = \frac{160}{6(EE)} = \frac{10}{6(EE)} = \frac{10}{18EE}$$

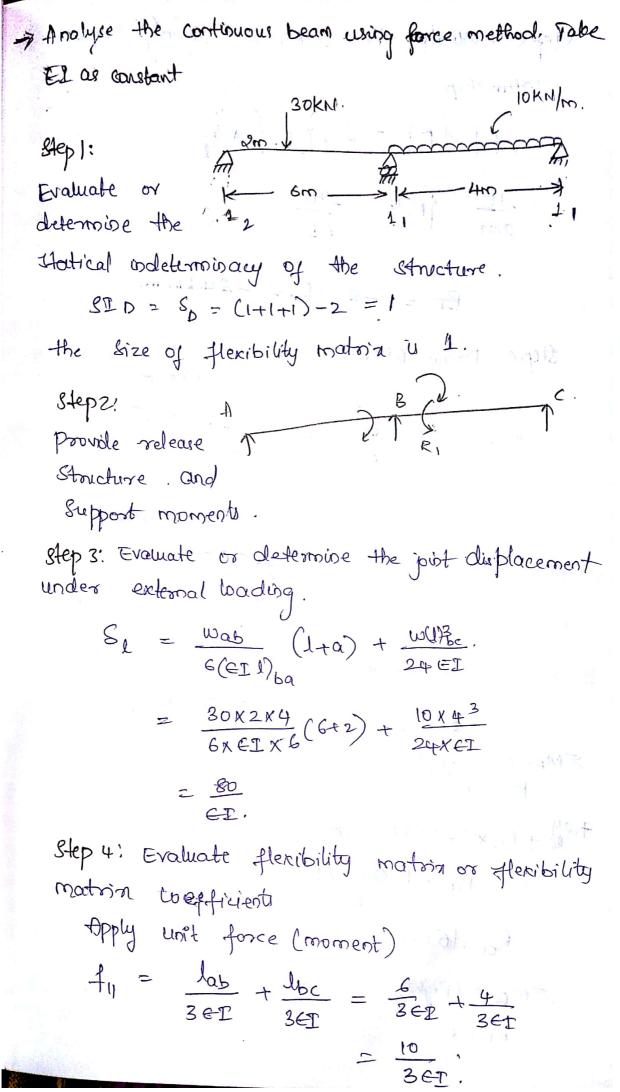
$$f_{22} = \frac{1b9}{3(E2)ba} + \frac{1bc}{3(E2)bc} =$$

$$\frac{10}{3(3 \in I)} + \frac{10}{3(\in I)}$$

$$= \frac{10}{9 \in I} + \frac{10}{3 \in I}$$

$$= \frac{40}{9 \in I}$$

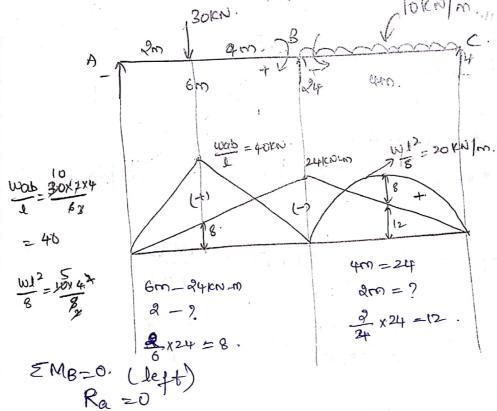

Steps: Evaluate the redundants ming the known relation ships


$$\frac{1}{61} \begin{cases} \frac{10}{9} & \frac{10}{18} \\ \frac{10}{18} & \frac{10}{18} \end{cases} \begin{cases} \frac{10}{18} & \frac{10}{18} \\ \frac{10}{18} & \frac{10}{18} \end{cases} \begin{cases} \frac{10}{18} & \frac{10}{18} \\ \frac{10}{18} & \frac{10}{18} \end{cases} \begin{cases} \frac{10}{18} & \frac{10}{18} \\ \frac{10}{18} & \frac{10}{18} \end{cases} \begin{cases} \frac{10}{18} & \frac{10}{18} \\ \frac{10}{18} & \frac{10}{18} \end{cases} \begin{cases} \frac{10}{18} & \frac{10}{18} \\ \frac{10}{18} & \frac{10}{18} \end{cases} \begin{cases} \frac{10}{18} & \frac{10}{18} \\ \frac{10}{18} & \frac{10}{18} \end{cases} \begin{cases} \frac{10}{18} & \frac{10}{18} \\ \frac{10}{18} & \frac{10}{18} \end{cases} \begin{cases} \frac{10}{18} & \frac{10}{18} \\ \frac{10}{18} & \frac{10}{18} \end{cases} \end{cases}$$

$$\begin{cases}
 10|9 \\
 10|18
 \end{cases}
 \begin{cases}
 R_1 \\
 R_2
 \end{cases}
 = - \begin{cases}
 222,22 \\
 322,22
 \end{cases}$$

$$\frac{10}{9}R_1 + \frac{16}{18}R_2 = -222.22$$
1.11

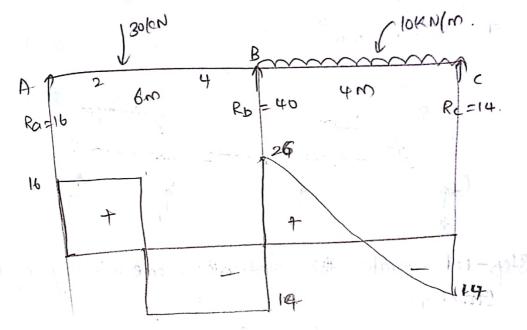
$$\frac{10}{18} R_1 + \frac{40}{9} R_2 = -322.22$$



Scanned by CamScanner

Steps: Evaluate the redundants using known relationship

$$\frac{10}{362} \cdot \left\{ R_{1} \right\} = \frac{-80}{62}$$

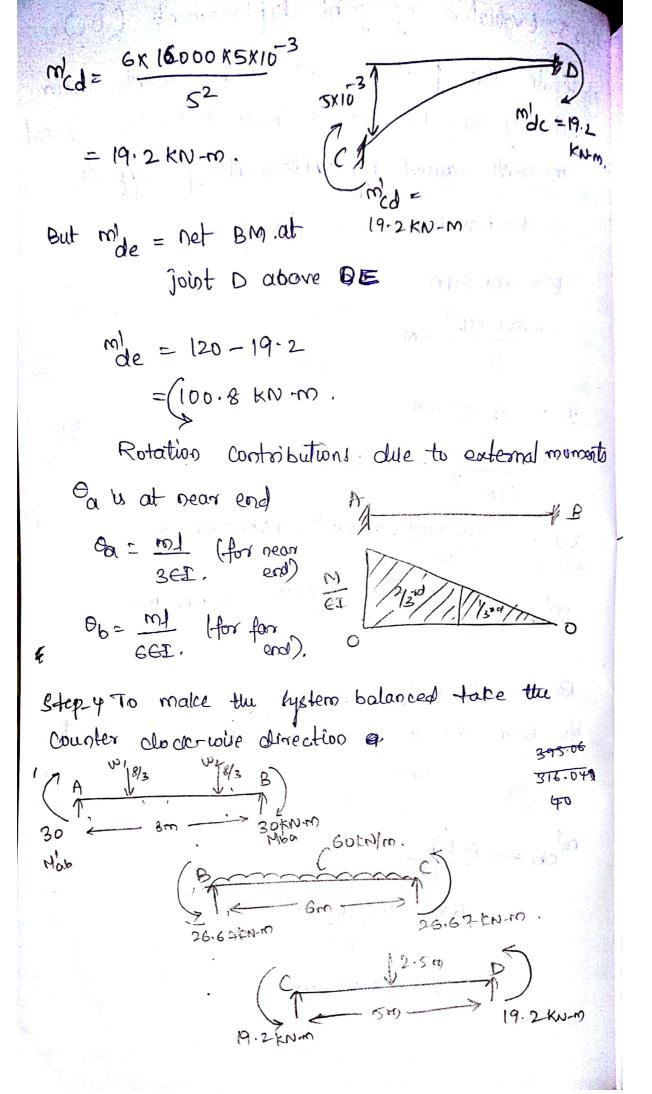

Step 6: Draw, BMD.

$$+24 + Rax6 - 30x4 = 0$$

$$Ra = 129 - 24$$

$$Rc = 14$$

 $Ra + Rb + Rc = (30) + (10 \times 4)$
 $Rb = -30 + 30 + 40$
 $Rb = 40$



Syncing of Su

Syncing of Supports. (Rotation of any Supports) -> Analyse the Continuous beam as shown in the fig. using force method. draw the BM and Shear force dia. also. during the loading, the Supposts B and c Sync by 10mm & 5mm respectively. Take Assume E-200 GPa and I= 80 × 106 mm4 A | 100KN |00KN | 60KN/m | 100KN | 20KN/m . 40K A | 93 | 183 B | C | 2510 D/mmm/m SP | 281 | 700 | 281 | 700 | 28m | 28m | 28m | 38mm/m | 18mm/m Step-1: Evaluate the staticall indeterminacy of the Structure STD = Sd = (2+1+1) - 2 = 3. Step 2: Arrangement of redundants. A JOSEPH DE DE RESTORMENTO RIZ MA R2= MB R3 = Mc Mo~(40x2)+(20x2)*== = 80+40 = 120 km (Anti-clockwise

step 3: Evaluation of joint displacements (8) Note: In this pooblem, joint displacements occur not only due to external boods but also external moments caused by Settlement of Supports. External moments classification. = 200 GPA = 200 KID 9 KN. E = 200 GPA 1 = 80/106 mm $\frac{280\times10^{6}}{(10^{3})^{4}} = 80\times10^{6} \text{ m}^{4}.10^{10}$ $EI = \frac{200 \times 10^{9} \times 80 \times 10^{6}}{10^{3}} = \frac{16000 \times 10^{6}}{10^{3}} = \frac{16000 \times 10^{9}}{10^{3}}$ $m_{ab}^{1} = \frac{6 \times 2 \times 16000 \times 10 \times 10^{-3}}{82} = 30 \times N - m$ Relative devel différence Hw B and C = 10-5 = 26.67 KN-m 6x2x16000 X5x10

= 26.67 KN-m

(SL) = i robation (contribution of joint 1.

[SL) = 0a

=
$$\frac{W_1ab}{6(eIJ)} (1+b) + \frac{W_2ab}{6(eIJ)} (1+b) + \frac{m_0b}{3} (10b)$$

= $\frac{W_1ab}{6(eIJ)} (1+b) + \frac{W_2ab}{6(eIJ)} (1+b) + \frac{m_0b}{3} (10b)$

= $\frac{100x \frac{3}{2} \times \frac{16}{3}}{6 \times 2 \times 16000 \times 8} (8 + \frac{16}{3}) + \frac{100x \frac{16}{2} \times \frac{8}{3}}{6 \times 2 \times 16000 \times 8} (8 + \frac{8}{3})$

= $\frac{100x \frac{3}{2} \times \frac{16}{3}}{6 \times 2 \times 16000 \times 8} (8 + \frac{8}{3}) + \frac{100x \frac{16}{2} \times \frac{8}{3}}{6 \times 2 \times 16000 \times 8} (8 + \frac{8}{3})$

= $\frac{30 \times 8}{3 \times 2 \times 16000} - \frac{30 \times 8}{6 \times 2 \times 16000}$

= $\frac{30 \times 8}{3 \times 2 \times 16000} - \frac{30 \times 8}{6 \times 2 \times 16000}$

= $\frac{0.0234 + 0.0234 + 0.0225}{0.0234 + 0.0225}$

= $\frac{0.0234 + 0.0234 + 0.0225}{0.0234 + 0.0225}$

= $\frac{0.0234 + 0.0234 + 0.0225}{0.0234 + 0.0225}$

= $\frac{0.0234 + 0.0234 + 0.0234 + 0.0225}{0.0234 + 0.0225}$

= $\frac{0.0234 + 0.0234 + 0.0234 + 0.0225}{0.0234 + 0.0225}$

= $\frac{0.0234 + 0.0234 + 0.0234 + 0.0225}{0.0234 + 0.0225}$

= $\frac{0.0234 + 0.0234 + 0.0234 + 0.0225}{0.0234 + 0.0225}$

= $\frac{0.0234 + 0.0234 + 0.0234 + 0.0225}{0.0234 + 0.0225}$

= $\frac{0.0234 + 0.0234 + 0.0234 + 0.0225}{0.0234 + 0.0225}$

= $\frac{0.0234 + 0.0234 + 0.0225}{0.0234 + 0.0225}$

= $\frac{0.0234 + 0.0234 + 0.0234 + 0.0225}{0.0234 + 0.0225}$

= $\frac{0.0234 + 0.$

$$= \begin{bmatrix} \frac{60\times6^{3}}{24\times2\times16000} - \frac{26.64\times6}{3\times2\times16000} + \frac{26.64\times6}{6\times2\times16000} \\ \frac{24\times2\times16000}{3\times2\times16000} + \frac{26.64\times6}{6\times2\times16000} \\ \frac{24\times2\times16000\times8}{3\times2\times16000\times8} + \frac{100\times\frac{16}{3}\times\frac{3}{3}}{6\times2\times16000} \\ \frac{30\times8}{6\times2\times16000} - \frac{30\times8}{6\times2\times16000} \\ = 0.01604 + 0.02349 - \frac{30\times8}{9\times2} \\ = 0.03951. \left(0.3201\right) + \frac{5330}{9\times2} \\ \frac{30\times3}{9\times2} + \frac{100\times16000}{10\times2} + \frac{100\times16000}{10\times2} \\ \frac{10\times16}{6\times2\times16000} - \frac{10\times16}{3\times2\times16000} + \frac{100\times16}{3\times2\times16000} \\ = \frac{60\times6^{3}}{24\times2\times16000} - \frac{26.64\times6}{6\times2\times16000} + \frac{26.64\times6}{3\times2\times16000} \\ + \frac{100\times5^{2}}{16\times16000} - \frac{19.2\times5}{3\times16000} + \frac{100.8\times5}{3\times2\times16000} \\ = 0.03072 + \frac{19.2\times5}{3\times2\times16000} + \frac{100.8\times5}{3\times2\times16000} \\ = 0.03072 + \frac{100.8\times5}{3\times2\times16000} + \frac{100.8\times5}{3\times2\times16000} \\ = 0.03072 + \frac{100.8\times5}{3\times2\times16000} + \frac{100.8\times5}{3\times2\times16000} \\ = 0.03072 + \frac{100.8\times5}{3\times2\times16000} + \frac{100.8\times5}{3\times2\times160$$

steps. Evaluate flexibility matrin coefficients.

Apply unit force along the coordinate 1.

$$\frac{1}{3(ab)} = \frac{8}{3(ab)} = \frac{8}{6cT}.$$

$$f_{21} = \frac{1_{ba}}{6(EL)_{ba}} = \frac{8}{6(2EL)} = \frac{8}{12EL}$$

Apply unit force (moment) along coordinate 2 to get 2nd column of flexibility matrix.

$$= \frac{8}{3(262)} + \frac{6}{3(262)} = \frac{14}{662}.$$

$$f_{32} = \frac{1}{6(62)_{CD}} = \frac{6}{6(262)} = \frac{1}{262}$$

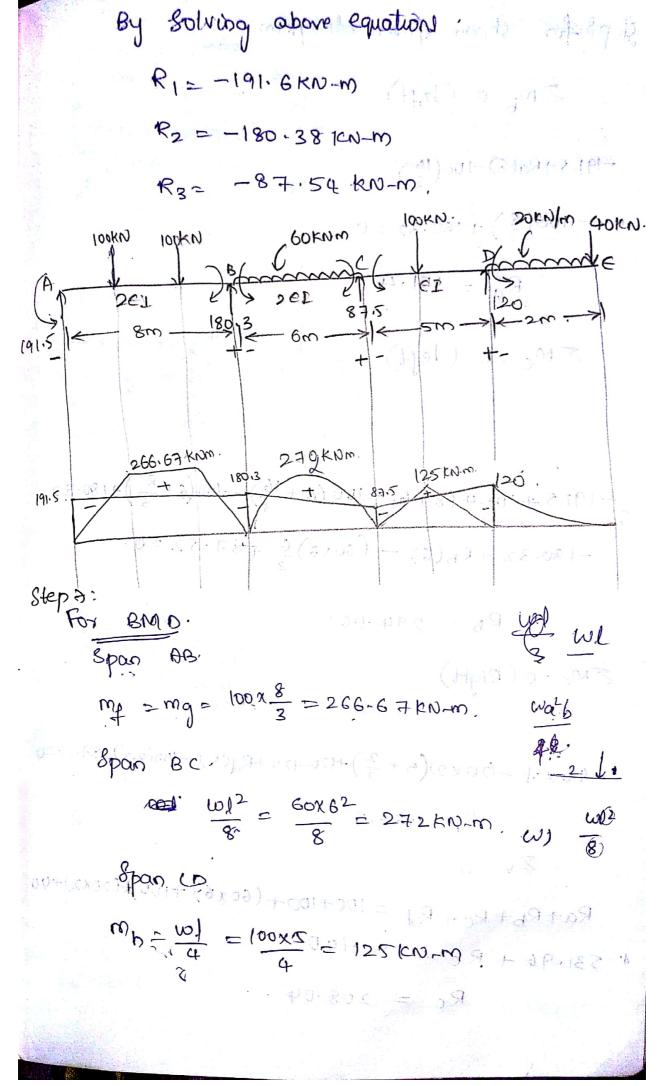
E+311- = e9 = + e9 = + 0

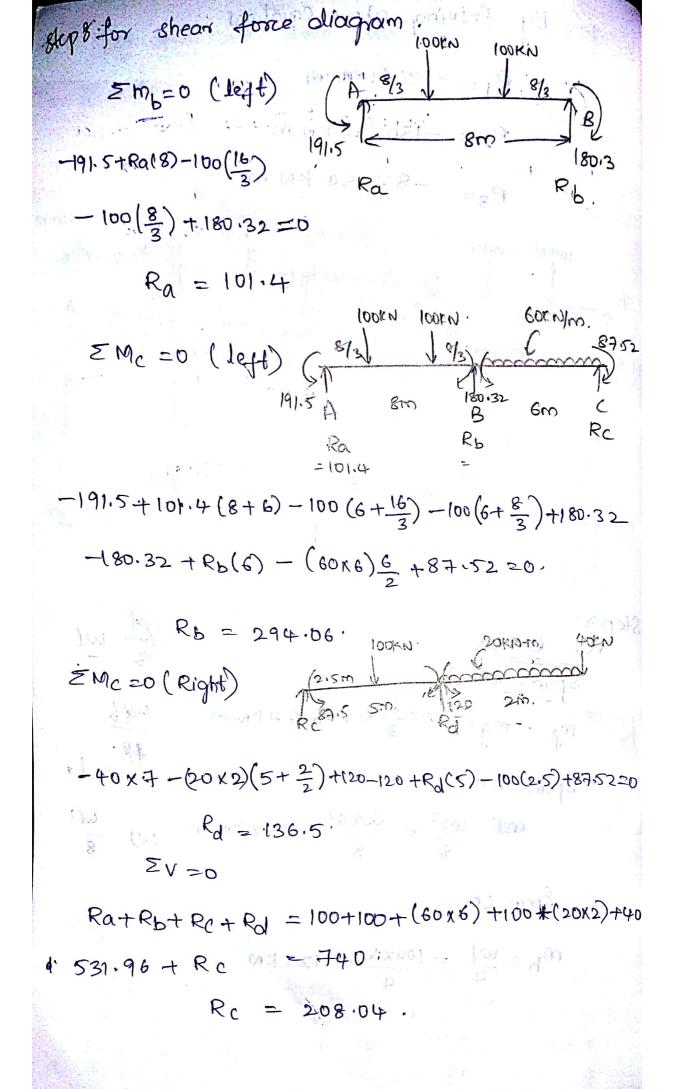
$$f_{23} = \frac{f_{66}}{6(ED)} = \frac{6}{6(2ED)} = \frac{1}{2ED}$$

$$f_{33} = \frac{J_{cb}}{3(e3)_{cb}} + \frac{J_{cd}}{3(e3)_{cd}}$$

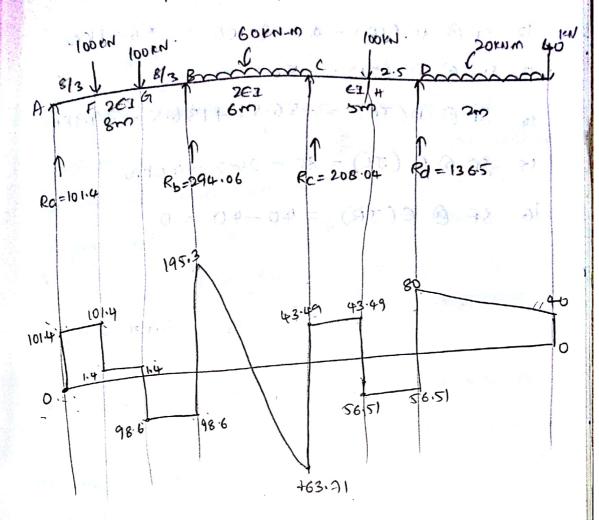
$$\frac{5}{3(2eP)} + \frac{5}{3eP} = \frac{8}{3eP}$$

Step 6: Evaluate the unknown values (Redundants) i.e., R1, R2, R3. are determined using known relation thip.


$$\begin{bmatrix}
 f \end{bmatrix} \stackrel{?}{q} R \stackrel{?}{y} = \frac{1}{2} 8 \stackrel{?}{y} - \frac{1}{2} 8 \stackrel{?}{y} = \frac{1}{2} 8 \stackrel{?}{y} - \frac{1}{2} 8 \stackrel{?}{y} = \frac{1}{2} 8 \stackrel{?}{y} = \frac{1}{2} 8 \stackrel{?}{y} = \frac{1}{2} 8 \stackrel{?}{y} = \frac{1}{2} \frac{1}{2} \frac{3380}{9} = \frac{1}{2} \frac{3380}{9} = \frac{1}{2} \frac{3380}{9} = \frac{1}{2} \frac{1}{2$$


$$\frac{8}{6}R_{1} + \frac{8}{12}R_{2} + 0 = -\frac{3380}{9} \quad 345.555$$

$$\frac{8}{6}R_{1} + \frac{8}{12}R_{2} + 0 = -\frac{3380}{9} \quad 345.555$$


$$\frac{8}{12}R_{1} + \frac{14}{6}R_{2} + \frac{1}{2}R_{3} = -\frac{5330}{9} \quad 592.222$$

$$0 + \frac{1}{2}R_{2} + \frac{8}{3}R_{3} = -\frac{11649}{36} \quad 323.58$$

Shear force diagram:

11. SF@ H (JC)=43.49 BN.

12. SF (a + CJR) = 43.49-100 = -56.51KN.

13. SF @ D (JU) = -56.51 KN

14. SF@ D(JR) = -56.5) +136.5 = 79.9KN.

Section 4 (10) 13 12

1 (C 6. (5) . 6 9 12

MINNSPEED NOT AND - (40) + B 45.9

ENSTE 2011 PERSHOST - 1973 9 48 8

16 6 6 12 D 5 192 50 - (608) - 62 56 15 0 27 5

10. SPE (TO) = -164 AI - 2003 2 0 3 4 1 1 10:

15. SF Q E (JI) = 80 - 20x2 = 40kN,

16. St @ E(JR) = 40-40 =0.

30/10/18 Amount 10017-10,

Static Condensation:

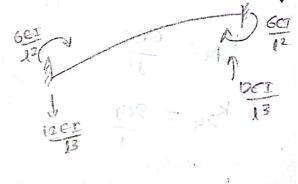
Static condensation means bring of zero displacements or known displacements at the bottom of the displacements at the vector and unknown displacement at the top of displacement Vector

Now, rearrange the total stiffness vector matrix (column matrix) according to the above displacement vector

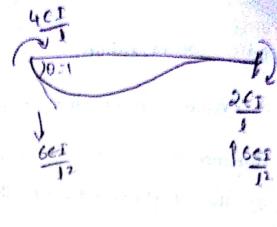
Explanation of static Condensation with Suitable en.

let w Consider a SSB having degrees of freedom

as shown in the fig.

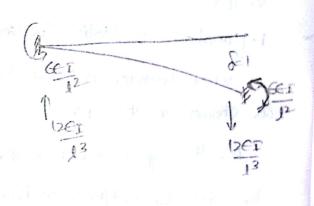

As the given @ DOF u 4,

the size of stiffners matrix

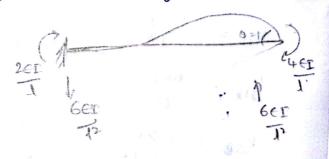

Evaluate the stiffners of matrin along coordinate 1.

$$\xi_{12} = \frac{6eI}{l^2}$$

$$k_{41} = \frac{6c_1}{l^2}$$


Evaluate stiffner mothin along condinate a

Evaluate Stiffness matrin along coordinate of.


$$kg_3 = -\frac{GCP}{I^2}$$

$$K_{43} = \frac{-6CI}{l^2}$$

Evaluate the stiffners matrin along coordinat 4

$$k_{34} = -6\epsilon I$$
 I^2

bet
$$\frac{1}{1^3}$$
 $\frac{6eT}{1^2}$ $\frac{6eT}{1^3}$ $\frac{6eT}{1^2}$ $\frac{6eT}{1^2}$

As per basies
$$\{ \overline{p} \} = \{ k \} \{ \overline{u} \} \rightarrow 3$$

In above expression

In equation 2, the $\Delta_{\mathbf{p}}$, $\Delta_{\mathbf{g}}$, brown displacements

 $[k_{1}][s_{1}]+[k_{1}][s_{2}]=[\overline{P_{1}}] \longrightarrow \bigcirc$

 $[k_2][\delta_1] + [k_2][\delta_2] = [P_2] \rightarrow 6$

En above expression topos

[K12] { S2 } & [K22] { S2} =0.

It is known from the above relationships he, from support conditions so that the resultant of the exiffness matrix can be obtained by deleting the corresponding mous and columns from the original matrix.

$$\begin{bmatrix} K_B \end{bmatrix}^* = \begin{bmatrix} 4 & \text{ef} \\ 1 \end{bmatrix} & 2 & \text{ef} \\ 2 & \text{ef} \end{bmatrix}$$

$$2 & \text{ef} \\ 1 & \text{ef} \end{bmatrix}$$

The Vertical reaction Pi, P2 can be calculated from the above relationship.

$$\begin{bmatrix} k_{21} \end{bmatrix}^{2} = \begin{bmatrix} 6EI \\ l^{2} \end{bmatrix}$$

$$-6EI \\ J^{2} = \begin{bmatrix} -6EI \\ J^{2} \end{bmatrix}$$

Same coordinate i.e., the displacements can be taken or placed feely at roller support.

from the above expression. $[k_{2i}] [d_{i}] = -[k_{22}] [d_{2}] \rightarrow 6$.

where $\delta_{2} = -[k_{22}] [k_{2i}] [d_{i}]$

Now substitute the 82 value in expression @

K* a called static conclensation matrix.

What are the effects in structures due to thermal stress.

One of the properties of metal is that they transfer heat. Physical changes that occur with this transfer include that expansion when temperature increases and shribbage when temperature decreases. This happear in all 3-dimensions.

Thermal stresses occur as a result of thermal expansion of metallic structural members with the temperature changes changes in temperature came thermal deformation to the structural members. The Value of this deformation can be described using the following formula

St = XXLX (T-TO)

(ib) (ca)

St = the deformation of the structural member due to

change + in temperature

x = temperature Coefficient of expansion, a makerial measured in units /ox

L= original length of the structural members.

T = Cinal temperature measured is unit. (k or e)

To a Inital temperature or original temperature (koroc)

when a structural member " of free to move and expand, there is no stress extend on it. However, when movement and expansion are restricted, then thermal stress occurs when motion is restricted in the direction of expansion, the value of reaction force is equal to the value of the free necessary to compress a beam in the opposite direction, and by the same amount of deformation we can use the following formula, to describe the relation ship.

Here, 8 = alexormation of the books due to reaction force which is equal to the deflection of bears due to thermal expansion but in the oppoliration

A = Cfs area of beam. E = youngs modulus of the material (al/m2) L=length of the beam.

Putting together our understanding, of thermal expansión and the forces involve, we can now solve for theoreal stresses, represented by following relationship

UNIT-Villado - 10 montalis hattounial

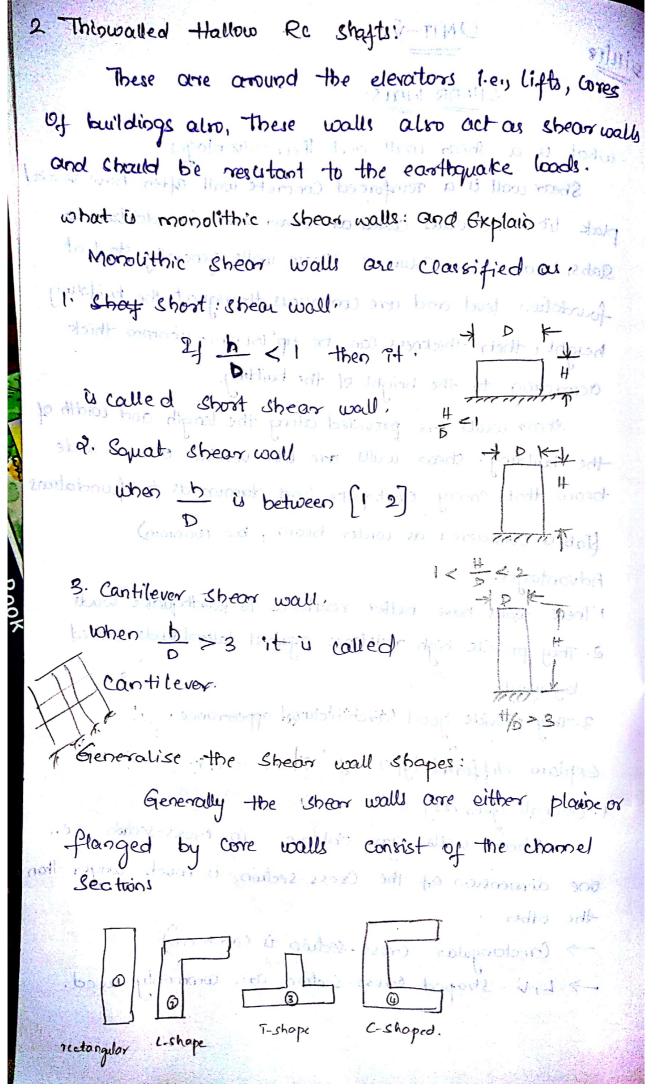
SHEAR WALLS.

what is a shear wall and their advantages.

Shear wall it a reinforced Concrete wall often have vertical plate like Rc walls called as shear walls in addition to Slabs, beams and Columns. These walls generally start at foundation level and are continuous throughout the building height, their thickness can be to 150 mm - 400 mm thick according to the height of the building.

Shear walls are provided along the length and width of the building. Shear walls are like vertical oriented wide bears that carry earthquake load downwards to foundations Plat i considered as wider beam, b= 100 omm) Advantages:

1. These walls have better resistance to earthquake bods.


- 2. They provide high resistance against lateral woods caused by wisd.
 - 3. They provide good architectural appearance.

Explain different types of Shear walls.

1. Overall geometry walls: (Idwinerson of the cls is much longer than other). Shear walls are obline in moss-section 1.e.,

one dimpensión of the Cross-section is much longer than the other

- -> Crectargular cross-sectión à common).
- ->. L, V. Shaped cross-section are commonly med.

while Explain the behaviour of Shear walls:

1. Behavior of shear walls with particular reference to their mode of failure as in the case of beams. influenced by their proporties as well as support Conditions.

of these are carac characterized relatively small height to length ratio (1/d ratio), maisly expected to fail is shear just like deep beams.

3. Shear walls occurrent in high-size buildings are other thank generally behave as vertically Cantileves beams with their strength controlled by flexure rather than shear. Such walls are subjected to beading moments, shear originating. Subjected to beading moments, shear originating. Subjected to beading and axial compression caused from lateral boods. and axial compression caused from lateral boods.

(load)
[Plan] two
[Toglan]

Leglan

L

 $\left(\frac{1}{2} \times \omega \times h\omega\right) \frac{2}{3} h\omega$ $\frac{\omega h\omega^2}{3}$

Behaviour of contilever shear walls? Shear walls are costical for walls with relatively low height and length ratios, tall Shear walls controlled mainly by flexural requirements as shown is fig below. The fig shows a typical shear wall of height hw, length Iw and thickness two. Elepotion hw A postion of shear wall which interact with frames may behave as low shears wall depending Upon the postions of the walls and location of the point of contrafference along the height of walls. The later is depending provincing on the relative stiffness of the frame and shear wall element in structure and & Court run E)

will Explain the methods of analysis of a structure with shear walls.

- 1. Perforated Shear wall method.
- a. Segmented Shear wall method.
- 3. Shear through panel rotation
- 4. Ni-kara cabeylis method.

a capeyus method.

5. Alternate retational Analysis.

1. Perforated stream wall method: (applicable when F < 1 only).

This method relates shear capacity of a wall with perforations (openings) (exidoors, windows a both) to a wall of identical configuration without Perforations through an empirical reduction factor (F). This value is determined as follows.

Thu is called reduction, factors where,
$$r = \frac{3-28}{1+\frac{A_0}{H\Xi li}}$$

where, Ao = total area of openings

H = height of wall.

li = Summation of length of all full

height wall Segment

T = Shear area ratio.

In this method, the designer shall multiply the shear wall resistance calculated based on the total wall length (including the delength of perforations) by the reduction factors.

If
$$F \le 1$$
, determine the F value with the below
of equation $1 \left[F = \frac{\pi}{3-2\pi} \right]$

The total shear resistance of a shear wall is determined as follows.

where V = total lateral resistance of a perforable shear wall live F = reduction parameter according to equal line L = total length of shear wall line

which including length of perforations.

where V = total is a perforation of the shear resistance defermined.

From appendix B. ...

The method requires that the overturning restrain are installed at the wall ends that typically Counside with building Corners. (the man wall unit Shear Capacity I.e., unfractured not exceeding 12001b) It. Segmented thear wall method:

Segments located between wall openings. each Segment should be fully restrained against over-turning. The contribution of the components above and below openings are ignored. The unit shear resistance is multiplied by the

segment length to determine shear resistance of the Segment. The total shear resistance of Shear wall line is determined as a sum of resistance et all individual Segments as follows.

V = = 1=1

where, V = total lateral resultance of shear wall live

li = length of an individual shear wall Segment vi= unit shear resutance of an rehear wall Beginnent determined from appendix B n= no. of shear wall segments in shear wall line.

If F \le 1 then perforated shear wall method is used. There is no chance of F>1, if such happens segmented shears wall method is adopted 16/11/18

3. Shear through panel notation:

This method is used to determine the shear resistance of a fully restrained lighter frame non-perforated shear wall segment through modelling the notation response of individual sheating panels that are fastened to the wall framing with nails (on screws.

This method is formulated with an assumption that a sheating panel notates around its center. ous rigid , body. The configuration of an individual

nous to the total shear resistance is determined based on the distance footo the nail to the center of panel rotation and relative noil displacement. The unit shear wall of an individual shear panel is determined as follows. -09-42 Vio = CNIET Ki where, $Ki = Sin B \sqrt{\frac{24}{B} cosp} + \frac{(yi)}{H} sin B)$ Cri = Pear resultance of individual sheating. B = width of Sheating panel. height of sheating panel. B= angle b/w the diagonal and Vertical H edge of individual sheating peinel 1= Sheating fastener enumerator. 11 = horizontal coordinate of 1th fastener relative to the panel centers. yi= Vertical coordinate of the fastener relative and to the panel Centre. Ki = geometric characteristic of fastering, Schedule of a Sheating panel. Man paimer ; thou sal st tomber and trait I want paily not us in the metal of belowers of booking will color of shorter power policy of the ex Mayod a body. The configuration of place a boght se

4. Ni- karacabeylis method:

These mechanics based method is formulated such that the resistance of a non-perforated shear wall segment with a partial over-turning restraint is expressed as a fraction of the resistance of an identical shear wall segment with full restraint. This shear capacity ratio for a wall with a partial overturning restraint and the full overturning restraint can be determined as

follows: $\alpha = \sqrt{1+29Y+Y^2} - Y \rightarrow 0$ $\varphi = \frac{R}{mcN} \rightarrow 0 \left[0 < 9 < 1\right]$ (Small phi) mcN

where, $\alpha = ratio of lateral load capacity of a wall segment with partial upliff restraint to the capacity of wall segment with full upliff restraint.$

R = uplift restraint force on the end stude of shear wall that include contribution of partial overturning restraint, gravity load, corner effect and other system effect. (b) (breadth) r= wall segment aspect ratio: (h) height

9 = uplift restraint effect which is equal-tounity for the walls fully restraint against overfurning.

m = total no. of nails along the end stud of shear wall segment.

CN = capacity of single nail connection that can be measured experimentally or estimated using the connection yield theory.

The total resistance of stear wall live is determined as sum of the resultances of all isodividual segments as follows.

n(total) $V = \sum_{i=1}^{n} \alpha_i \, l_i \, v_i$

where, V = total lateral resistance of shear wall line

a = It is described is eq. O.

Li = length of an individual shear wall segment

Vi = unit shear resistance of an individual

Shear wall segment determined from appendin B

n = no of shear wall segments in a shear wall line

5. Alternate rational analysis:

This section is not intended to limit the we of atternate design methods that we recognized principles of mechanics and engineering.

Enamples of such methods include finite element analysis, matrin analysis, energy based formulations, Solutions in another way.

tronger took in fillet. The is into

buts bor all pools stong pool lotal .

Cu = capacity of single north women that can be measured experientable or established usually the cornelian yield thread

Scanned by CamScanner

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering

MATRIX METHODS OF STRUCTURAL ANALYSIS (GR20D5001)

COURSE FILE CHECK LIST

S.No.	Name of the Format	Page
1.	Syllabus	
2.	Time Table	
3.	Program educational Objectives	
4.	Program objectives	
5.	Course Objectives	
6.	Course Outcomes	
7.	Students Roll List	
8.	Guide lines to study the course books & references, course design & delivery	
9.	Course schedule	
10.	Unit plan/Course Plan	
11.	Evaluation Strategy	
12.	Assessment in relation to COB's and Co's	
13.	Tutorial Sheets	
14.	Assignment Sheets	
15.	Rubric for Course	
16.	Mappings of CO's and Po's	
17.	Model question papers	
18.	Mid-I and Mid-II question papers	
19.	Mid –I marks	
20.	Mid –II marks	
21.	Sample answer scripts and Assignments	
22.	Course materials like notes, PPT's, Videos etc.,	

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

COURSE COMPLETION STATUS

-Academic	Year	:	202	21-22

Semester : I

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR20D5001

Name of the Faculty: Dr. GVV Satyanarayana Dept.: Civil Engineering

Designation: PROFESSOR

Actual Date of Completion & Remarks, if any

Units	Remarks	No. of Objectives Achieved	No. of Outcomes Achieved
Unit 1	Introduction to Matrix methods of Analysis	1	1
Unit 2	Assembly of stiffness matrices	2	2
Unit 3	Introduction about Flexibility matrix method(Force Method) And application to indeterminate beams	3	3
Unit 4	Introduction about Special analysis procedures	4	4
Unit 5	Special analysis procedures	5	5

Signature of HOD	Signature of faculty

Date:

Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 26-10-2022

Semester : I Unit - I Introduction to Matrix methods of Analysis

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: Duration of Lesson: 1hr

Lesson Title: Introduction about Matrix methods of analysis

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Definition of structure and its importance.
- 2. Analyze the different parameters induced in the structure during loading.
- 3. Analyze different structures with different end conditions.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Definition of a structure
- Differentiate between link and mechanism
- Different types of structures

Assignment / Questions: (1 & 1) 1. What is a structure?

(1 & 1) 2. Explain link and hinge where they are used.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 27-10-2022

Semester : I Unit – I Introduction to Matrix methods of Analysis

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 2 Duration of Lesson: <u>1hr</u>

Lesson Title: Determination of Static indeterminacy of structures

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Definition of static indeterminacy.
- 2. Basic formulas for various structures come under static indeterminate.
- 3. Tips in determination of static indeterminacy.

TEACHING AIDS : white board, Different color markers

TEACHING POINTS

- Definition of static indeterminacy.
- Differentiate between link and hinge in a structure.
- Formula for static indeterminacy for external and internal indeterminacy of various structures.

Assignment / Questions: (1 & 1) 1. What is redundant?

(1 & 1) 2. Explain in determination of static indeterminacy of a structure.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 31-10-2022

Semester : I Unit – I Introduction to Matrix methods of Analysis

Name of the Program: M.Tech(Structural Engineering)

Year: I

Course/Subject:Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 3 Duration of Lesson: 1hr

Lesson Title: Determination of Kinematic indeterminacy of structures

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Determination of Kinematic indeterminacy of structures.
- 2. Degrees of freedom at various supports.
- 3. Difference between DOF's and redundants.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Definition of kinematic indeterminacy.
- Differentiate between static and kinematic indeterminacy.
- Evaluation of kinematic indeterminacy with different methods.

Assignment / Questions: (1 & 1) 1. Explain the procedure in evaluation of kinematic indeterminacy? (1 & 1) 2. Explain the difference between static and kinematic indeterminate

structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 01-11-2022

Semester : II Unit – I Introduction to Matrix methods of Analysis

Name of the Program: M.Tech(Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty:.Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 4 Duration of Lesson: 1hr

Lesson Title: Determination of DOF of given structures

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Determine the DOF at different supports.
- 2. Analyze different structures with different end conditions

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Definition of a cantilever method in determination of KID.
- Differentiate between vertical and horizontal shear release at supports.

Assignment / Questions: (1 & 1) 1. What is angular and linear translation at pin and rigid joints?

(1 & 1) 2. Explain the cantilever method or tree method to evaluate the KID of structure..

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 02-11-2022

Semester : I Unit – I Introduction to Matrix methods of Analysis

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject:Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 5 Duration of Lesson: <u>1hr</u>

Lesson Title: Co-Ordinate sysytems

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Wha are the different co-ordinate systems?
- 2. How to change the local co-ordinates into global co-ordinate system.
- 3. Importance of transformation matrix.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Definition of transformation matrix.
- How to change local co-ordinates in to global co-ordinates?

Assignment / Questions: (1 & 1) 1. What is use of transformation matrix?

(1 & 2) 2. Explain the differences between local and global co-ordinate system.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 03-11-2022

Semester : I Unit – I Introduction to Matrix methods of Analysis

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 6 Duration of Lesson: <u>1hr</u>

Lesson Title: Structure idealize

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. How to idealize the structure under different co-ordinate systems?
- 2. What is structure idealization?
- 3. State the importance of structural idealization

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Definition of transformation matrix.
- How to change local co-ordinates in to global co-ordinates?

Assignment / Questions: (1 & 1) 1. What is use of structural idealization?

(1 & 2) 2. Explain the importance of structural idealization.

.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 08-11-2022

Semester : I Unit – I Introduction to Matrix methods of Analysis

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject:Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty:Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 7 Duration of Lesson: 1hr

Lesson Title: Differentiate & relation between Stiffness & Flexibility Matrix methods

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand about the structure idealization.
- 3. Suitability of structure idealization in Structural Analysis.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

• Explain the procedure of structure idealization.

Assignment / Questions: (1 & 1) 1. Explain about the structure idealization.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 08-11-2022

Semester : I Unit – I Introduction to Matrix methods of Analysis

Name of the Program: M.Tech (Structural Engineering)

Year: II

Course/Subject:Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty:Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 8 Duration of Lesson: 1hr

Lesson Title: Differentiate and relation between Flexibility & stiffness matrix methods

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Derive the general relationship between Flexibility & stiffness matrix methods
- 2. Explain the differences between Flexibility & stiffness matrix methods

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- How to evaluate the general relationship between Flexibility & stiffness matrix methods
- Explain the differences between Flexibility & stiffness matrix methods

Assignment / Questions: (1 & 1) 1. Derive the relationship between Flexibility & stiffness matrix Methods.

(1 & 1) 2. List out the differences between Flexibility & stiffness matrix Methods.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 09-11-2022

Semester : I Unit – I Introduction to Matrix methods of Analysis

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 9 Duration of Lesson: 1hr

Lesson Title: Derive displacement equations for truss, beam and torsional element.

•

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Calculation of displacement equations for truss, beam and torsional elements.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

• Evaluate the displacement equations for truss, beam and orsional element.

Assignment / Questions: (1 & 1) 1. How to calculate the displacement equations for truss, beam and torsional elements?

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 10-11-2022

: I Unit- I Introduction to Matrix methods of Analysis Semester

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 10 Duration of Lesson: 1hr

Lesson Title: Discuss on local and Global co-ordinates

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand about the local and Global co-ordinates
- 1. Differences between local and natural co-ordinate systems.
- 2. Explain the procedure in calculation of global stiffness matrx and displacement vectors

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

• Explain about local stiffness matrices and Global and displacement and load vectors

Assignment / Questions: (1 & 1) 1. How to generate local and global stiffness, displacement and load vectors?

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 14-11-2022

Semester : I Unit- I Introduction to Matrix methods of Analysis

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 11 Duration of Lesson: <u>1hr</u>

Lesson Title: Discuss on questions in unit-1 from old question papers .

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the basic concepts of MMSA
- 2. Evaluate the global stiffness matrix from individual stiffness matrices.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Assembling of global stiffness matrix from individual stiffness matrices.
- Evaluate the size of global stiffness matix.

Assignment / Questions: (1 & 1) 1. Evaluate the global stiffness matrices from individual stiffness matrices

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 15-11-2022

Semester : I Unit- I Introduction to Matrix methods of Analysis

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 12 Duration of Lesson: 1hr

Lesson Title: Discuss on questions in unit-1 from old question papers .

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Determination of static and kinematic in determinacy of given structures.
- 2. How to calculate dofs of any structure?

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Evaluate the static and kinematic in determinacy of given structures.
- Evaluate the dofs of any structure?

Assignment / Questions: (1 & 1) 1. Evaluate the static and kinematic in determinacy of given structures and dofs of any structure?

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 16-11-2022

Semester : I Unit- II Assembly of stiffness matrices

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 13 Duration of Lesson: 1hr

Lesson Title: Explain assembly of stiffness matrices.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure in determination local and global stiffness matrices.
- 2. Understand the properties of stiffness matrix.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- What is local and global stiffness matrices in case rotation and how to assembly the local matrices in to global matrix.
- Properties and its role in stiffness matrices in structural analysis.

Assignment / Questions: (2 & 2) 1. Discuss the how to assembly the local stiffness matrices into global stiffness matrix.

(2 & 2) 2. List out the properties stiffness matrix.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 17-11-2022

Semester : I Unit- II Assembly of stiffness matrices

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 14 Duration of Lesson: 1hr

Lesson Title: General procedure for assembly stiffness matrices

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure in assembling of stiffness matrices.
- 2. Understand the importance of assembling of stiffness matrices.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

• The steps involved in assembling of stiffness matrices.

Assignment / Questions: (2 & 2) 1. Derive the global stiffness matrix using assembling of element stiffness matrices.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 21-11-2022

Semester : I Unit- II Assembly of stiffness matrices

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 15 Duration of Lesson: 1hr

Lesson Title: Displacement vectors

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure in assessment of displacements at different nodes.
- 2. How to calculate the unknowns (displacements) using known relationship?

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

• The steps involved in assessment of displacements at different nodes using known relationship.

Assignment / Questions: (2 & 2) 1. Derive the displacements at different nodes using known relationship

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 21-11-2022

Semester : I Unit- II Assembly of stiffness matrices

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 16 Duration of Lesson: 1hr

Lesson Title: Discuss on direct stiffness method.

<u>INSTRUCTIONAL/LESSON</u> OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the basic steps involved in derivation of stiffness matrix using direct stiffness approach.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

• Explain the procedure in determination of stiffness matrix using direct stiffness method..

Assignment / Questions: (2 & 2) 1. How to generate stiffness matrix using direct stiffness method.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 23-11-2022

Semester : I Unit- II Assembly of stiffness matrices

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 17 Duration of Lesson: 1hr

Lesson Title: General procedure for assembly stiffness matrices

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 3. Understand the procedure in assembling of stiffness matrices.
- 4. Understand the importance of assembling of stiffness matrices.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

• The steps involved in assembling of stiffness matrices.

Assignment / Questions: (2 & 2) 1. Derive the global stiffness matrix using assembling of element stiffness matrices.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 24-11-2022

Semester : I Unit- II Assembly of stiffness matrices

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 18 Duration of Lesson: 1hr

Lesson Title: Discuss on direct stiffness method.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the basic steps involved in derivation of stiffness matrix using direct stiffness approach.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the properties of various support conditions and boundary conditions using in analysis of structures.

Assignment / Questions: (2 & 2) 1. List of properties of supports and boundary conditions.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 28-11-2022

Semester : I Unit- II Assembly of stiffness matrices

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 19 Duration of Lesson: 1hr

Lesson Title: Discuss on questions in unit-2 from old question papers.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Determination of stiffness matrix using direct stiffness matrix approach of given structures.
- 2. How to calculate the rotations and deformations at nodal joints?

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Evaluate the stiffness matrix using direct stiffness matrix approach of given structures.
- Evaluate the dofs of any structure?

Assignment / Questions: (2 & 2) 1. Evaluate the stiffness matrix using direct stiffness matrix approach of given structures.?

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 29-11-2022

Semester : I Unit- II Assembly of stiffness matrices

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 20 Duration of Lesson: 1hr

Lesson Title: Discuss on questions in unit-2 from old question papers.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 2. Determination of static and kinematic in determinacy of given structures.
- 2. How to calculate dofs of any structure?

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

• Evaluate the global stiffness matrix from local stiffness matrices

Assignment / Questions: (2 & 2) 1. Evaluate the global stiffness matrix from local stiffness matrices?

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 30-11-2022

Semester : I Unit-III Introduction about Flexibility matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 21 Duration of Lesson: 1hr

Lesson Title: Introduction about flexibility matrix or force method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any continuous beam having static indeterminate structure.
- 2. Calculate redundants using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyze the continuous beams using flexibility matrix method
- Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method.

(3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 01-12-2022

Semester : I Unit-III Introduction about Flexibility matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 22 Duration of Lesson: 1hr

Lesson Title: Flexibility matrix approach for statically in determinate beams force method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. How to calculate the static indeterminacy of given structure?

2. How to calculate redundants using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Analyze the continuous beams using flexibility matrix method

• Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method.

(3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 05-12-2022

Semester : I Unit-III Introduction about Flexibility matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 23 Duration of Lesson: 1hr

Lesson Title: Methodology to calculate the redundants of beam at joints using force method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any continuous beam having static indeterminate structure.
- 2. Calculate redundants using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyze the continuous beams using flexibility matrix method
- Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method.

(3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 06-12-2022

Semester : I Unit-III Introduction about Flexibility matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 24 Duration of Lesson: <u>1hr</u>

Lesson Title: Methodology to calculate the redundants of beam at joints using force method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any continuous beam having static indeterminate structure.
- 3. Calculate redundants using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyze the continuous beams using flexibility matrix method
- Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method.

(3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 07-12-2022

Semester : I Unit-III Introduction about Flexibility matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 25 Duration of Lesson: 1hr

Lesson Title: method Analyze continuous beams using flexibilty matrix method carrying with different

loads.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any continuous beam using force method having statically indeterminate.
- 2. Calculate redundants using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyze the continuous beams using flexibility matrix method
- Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method.

(3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 08-12-2022

Semester : I Unit-III Introduction about Flexibility matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 26 Duration of Lesson: 1hr

Lesson Title: method Analyze continuous beams using flexibty matrix method carrying with different

loads.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any continuous beam using force method having statically indeterminate.
- 2. Calculate redundants using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyze the continuous beams using flexibility matrix method
- Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method.

(3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 12-12-2022

Semester : I Unit-III Introduction about Flexibility matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 27 Duration of Lesson: 1hr

Lesson Title: method Analyze continuous plane truss using flexibility matrix method carrying with different loads.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any plane truss using force method having statically Indeterminacy up to 2.
- 2. Calculate redundant forces using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyze the plane truss using flexibility matrix method
- Evaluate the redundant forces in a plane truss using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the redundant force in a plane truss for given loading using Force method.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 13-12-2022

Semester : I Unit-III Introduction about Flexibility matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 28 Duration of Lesson: 1hr

Lesson Title: Analyze continuous plane frame using flexibility matrix method carrying with

different loads.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any plane frame using force method having statically Indeterminacy up to 3.
- 2. Calculate redundant forces and moments using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyze the plane frame using flexibility matrix method
- Evaluate the redundant forces in a plane frame using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the redundant force in a plane frame for given loading using Force method.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 14-12-2022

Semester : I Unit-III Introduction about Flexibility matrix method

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 29 Duration of Lesson: 1hr

Lesson Title: Discuss on questions in unit-3 from old question papers.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Determination of unknown reactions of a continuous beam using flexibility matrix method..
- 2. Draw SFD and BMDs of given continuous beam.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Evaluate the unknown reactions of a continuous beam using flexibility matrix method...
 - Draw SFD and BMDs of given continuous beam.

Assignment / Questions: (3 & 3) 1. Analyse the continuous beam using flexibility matrix approach.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 15-12-2022

Semester : I Unit-III Introduction about Flexibility matrix method

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 30 Duration of Lesson: 1hr

Lesson Title: Discuss on questions in unit-3 from old question papers.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Determination of redundant forces in a statically indeterminate plane truss using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Evaluate of redundant forces in a statically indeterminate plane truss using flexibility matrix method.

Assignment / Questions: (3 & 3) 1. Evaluate of redundant forces in a statically indeterminate plane truss using flexibility matrix method.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 19-12-2022

Semester : I Unit-III Introduction about Flexibility matrix method

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 31 Duration of Lesson: 1hr

Lesson Title: Discuss on questions in unit-3 from old question papers.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1.. Determination of redundant forces in a statically indeterminate plane frame using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

• Evaluate of redundant forces in a statically indeterminate plane frame using flexibility matrix method.

Assignment / Questions: (3 & 3) 1. Evaluate of redundant forces in a statically indeterminate plane truss using flexibility matrix method

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 20-12-2022

Semester : I Unit-IV Introduction about stiffness matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 32 Duration of Lesson: 1hr

Lesson Title: Introduction about stiffness matrix or displacement method and applications to

Kinematically indeterminate structures

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the procedure to analyze any continuous beam with kinematic indeterminate structure.

2. Calculate the dof's of any given structure.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Analyze the continuous beams using stiffness matrix method

• Evaluate the support moments using stiffness matrix method

Assignment / Questions: (4 & 4) 1. Evaluate the support moments for given loading using displacement Method

(4 & 4) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 21-12-2022

Semester : I Unit-IV Introduction about stiffness matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 33 Duration of Lesson: <u>1hr</u>

Lesson Title: Stiffness matrix approach to kinematically indeterminate beams.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Calculate the kinematic indeterminacy (KID) of given beam.
- 2. Understand in calculation of support rotations and moments using displacement method

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Explain the procedure to evaluate KID of the given beam or any structure.
- Evaluate the support rotations and moments in continuous beams subjected various loading using stiffness matrix method.

Assignment / Questions: (4 & 4) 1. Evaluate support rotations of a given continuous beam using displacement method.

(4 & 4) 2. Evaluate the support moments of a continuous beams using displacement method.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 22-12-2022

Semester : I Unit-IV Introduction about stiffness matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 34 Duration of Lesson: 1hr

Lesson Title: Methodology to calculate the support moments of beam joints using stiffness matrix

method.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Analyze the continuous beam using displacement method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Analyze the kinematically indeterminate of beams.

Assignment / Questions: (4 & 4) 1. Analyze the kinematically indeterminate structure.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 02-01-2023

Semester : I Unit-IV Introduction about stiffness matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 35 Duration of Lesson: 1hr

Lesson Title: Methodology to calculate the redundants forces at beam joints using stiffness matrix

method.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. 1. Analyze the KID structure using displacement method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyze the kinematically indeterminate of beams.
- 1. Assignment / Questions: (4 & 4) 1. Analyze the kinematically indeterminate structure.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date:03-01-2023

Semester : I Unit-IV Introduction about stiffness matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 36 Duration of Lesson: 1hr

Lesson Title: Analyze continuous beams using stiffness matrix method carrying with different loads.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand to analyze continuous beams using stiffness matrix method with kinematic indeterminacy 1, 2 or 3.
- 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) after analysis.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Evaluation of KID beams.
- Draw BMD and SFD after analysis.

Assignment / Questions: (4 & 4) 1. Analyze KID beams using displacement method under given loading.

(4 & 4) 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) for frame.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 04-01-2023

Semester : I Unit-IV Introduction about stiffness matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 37 Duration of Lesson: 1hr

Lesson Title: Analyze continuous beams using stiffness matrix method carrying with different loads and

sinking supports

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Analyze continuous beams using stiffness matrix method carrying with different loads and sinking supports
- 2. To draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) after analysis.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyze continuous beams using stiffness matrix method carrying with different loads and sinking supports
- Draw BMD and SFD after analysis.

Assignment / Questions: (4 & 4) 1. Analyze continuous beams using stiffness matrix method carrying with different loads and sinking supports

(4 & 4) 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) for portal frame after analysis.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 05-01-2023

Semester : I Unit-IV Introduction about stiffness matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 38 Duration of Lesson: 1hr

Lesson Title: Analyze plane truss by using stiffness matrix methods carrying with different loads

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Analyze the plane truss by using stiffness matrix methods carrying continuous beams with different loadings.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyze the plane truss carrying with different loadings.
- Draw BMD and SFD after analysis.

Assignment / Questions: (3 & 3) 1. Analyze the plane truss by using stiffness matrix methods carrying with different loadings.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 09-01-2023

Semester : I Unit-IV Introduction about stiffness matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 39 Duration of Lesson: 1hr

Lesson Title: Analyze plane frame by using stiffness matrix methods carrying with different loads

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Analyze the plane frame by using stiffness matrix methods carrying continuous beams with different loadings.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyze the plane frame carrying with different loadings.
- Draw BMD and SFD after analysis.

Assignment / Questions: (3 & 3) 1. Analyze the plane frame by using stiffness matrix methods carrying with different loadings.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 10-01-2023

Semester : I Unit-IV Introduction about stiffness matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 40 Duration of Lesson: 1hr

Lesson Title: Analyze Discus on old question papers

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Analyze the continuous beam from old question papers having KID 2 or 3.
- 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) after analysis.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Analyse the continuous beam from old question papers having KID 2 or 3.
- Draw BMD and SFD after analysis.

Assignment / Questions: (4 & 4) 1. Analyze the continuous beam from old question papers having KID 2 or 3.

(4 & 4) 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) for continuous beam after analysis.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 11-01-2023

Semester : I Unit-III Introduction about stiffness matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 41 Duration of Lesson: 1hr

Lesson Title: Solve old question papers

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Analyze the plane frame by using stiffness matrix methods from old question papers.
- 2. Evaluation of kinematic indeterminacy or total DOF of structure.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

Analyse any kinematic indeterminate plane frame using displacement method of structure.

Assignment / Questions: (4 & 4) 1. Analyze the plane frame by using stiffness matrix methods

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 12-01-2023

Semester : I Unit-III Introduction about stiffness matrix method

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 42 Duration of Lesson: 1hr

Lesson Title: Solve old question paper problems in unit-4

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the analysis of KID structures using displacement method.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

• Explain old question paper problems in unit-3 using displacement methods.

Assignment / Questions: (4 & 4) 1. Determine the kinematic indeterminacy and applied appropriate co-ordinates as per dof.

(4 & 4) 2. Analyse the KID structures using displacement method and draw SFD and BMD's.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 17-01-2023

Semester : I Unit-V Introduction about special analysis procedures

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 43 Duration of Lesson: <u>1hr</u>

Lesson Title: Introduction about special analysis procedures

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the importance and role of special procedure in analysis of structures.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

• Explain the methodology of special procedures in analysis of structures.

Assignment / Questions: (5 & 5) 1. State the need of special procedures in analysis of structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 18-01-2023

Semester : I Unit-IV Introduction about special analysis procedures

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 44 Duration of Lesson: 1hr

Lesson Title: What is Static condensation of structures?

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the importance of Static condensation of structures
- 2. Analyze the given structures using Static condensation procedure.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- Explain the term Static condensation of structures
- Explain the procedure in analysis of structures using Static condensation.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

Assignment / Questions: (4 & 4) 1. What is static condensation?

(4 & 4) 2. Explain Static condensation and its suitability in analysis of

structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 19-01-2023

Semester : I Unit-IV Introduction about special analysis procedures

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 45 Duration of Lesson: 1hr

Lesson Title: Explain Static condensation with suitable example structures

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the role of Static condensation in analysis of structures

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain the Static condensation with suitable example structures

Assignment / Questions: (5 & 5) 1. Explain the term static condensation with suitable example.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 23-01-2023

Semester : I Unit-IV Introduction about special analysis procedures

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 46 Duration of Lesson: 1hr

Lesson Title: What is sub-structuring?

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the principle of sub-structuring.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain the procedure of sub-structuring using analysis of structures.

Assignment / Questions: (5 & 5) 1. Explain the sub-structuring procedure in analysis of structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 24-01-2023

Semester : I Unit-IV Introduction about special analysis procedures

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 47 Duration of Lesson: 1hr

Lesson Title: Importance of sub-structuring in structural analysis

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand about the importance of sub-structuring

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain the role of sub-structuring in analysis of structures.

Assignment / Questions: (5 & 5) 1. Explain the role sub-structuring in analysis of structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 30-01-2023

Semester : I Unit-IV Introduction about special analysis procedures

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 48 Duration of Lesson: 1hr

Lesson Title: What is effect due to initial and thermal stresses in structures?

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the effect due to initial and thermal stresses in structures

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain the effects due to initial and thermal stresses in structures

Assignment / Questions: (5 & 5) 1. Describe the effects due to initial and thermal stresses in structures

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 31-01-2023

Semester : I Unit-V Shear walls

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 49 Duration of Lesson: 1hr

Lesson Title: - Introduction about shear walls.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the definition of shear walls.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain about shear walls.

Assignment / Questions: (5 & 5) 1. Discus about definition of shear walls.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 01-02-2023

Semester : II Unit-V Shear walls

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 50 Duration of Lesson: 1hr

Lesson Title: Necessity of shear walls in structures and their shapes

•

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

• Know about importance of shear walls in building constructions.

• Understand the shapes of shear walls and their role in building constructions.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Explain about importance of shear walls in building constructions.
- Explain various shapes of shear walls used in structures.

Assignment / Questions: (5 & 5) 1. Discuss on various shapes of shear walls used in structures.

• (5 & 5) 2. Discuss on importance of shear walls in building constructions.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date:01-02-2023

Semester : I Unit-V Shear walls

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 51 Duration of Lesson: 1hr

Lesson Title: Importance of shear walls in structures and their location in structures.

STRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

• Know about the locations of shear walls and role of shear walls against earthquake or lateral loads acting on structures.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain about the locations of shear walls and role of shear walls against earthquake or lateral loads acting on structures.

Assignment / Questions: (5 & 5) 1. Write about the locations of shear walls and role of shear walls against earthquake or lateral loads acting on structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 02-02-2023

Semester : I Unit-V Shear walls

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 52 Duration of Lesson: 1hr

Lesson Title: Structural behaviour of large frames with and without shear walls

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the behaviour large frames with and without shear walls

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain the behaviour of large frames with and without shear walls.

Assignment / Questions: (5 & 5) 1. Narrate the behaviour of large frames with and without shear walls.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 06-02-2023

Semester : I Unit-V Shear walls

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 53 Duration of Lesson: 1hr

Lesson Title: Structural behaviour of large frames with and without shear walls

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the behaviour large frames with and without shear walls

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

 Explain the behaviour of large frames with and without shear walls. 	 Explain
---	-----------------------------

Assignment / Questions: (5 & 5) 1. Narrate the behaviour of large frames with and without shear walls.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 07-02-2023

Semester : I Unit-V Shear walls

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 54 Duration of Lesson: 1hr

Lesson Title: Approximate methods of analysis for shear walls

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand in methods of analysis against shear walls.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain various approximate methods of analysis for shear walls.

Assignment / Questions: (5 & 5) 1. Discuss on various approximate methods of analysis for shear walls.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 08-02-2023

Semester : I Unit-V Shear walls

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 55 Duration of Lesson: 1hr

Lesson Title: Approximate methods of analysis for shear walls

.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

2. Understand in methods of analysis against shear walls.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain various approximate methods of analysis for shear walls.

Assignment / Questions: (5 & 5) 1. Discuss on various approximate methods of analysis for shear walls.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 09-02-2023

Semester : I Unit-V Shear walls

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 56 Duration of Lesson: 1hr

Lesson Title: Approximate methods of analysis for shear walls

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

3. Understand in methods of analysis against shear walls.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain various approximate methods of analysis for shear walls.

Assignment / Questions: (5 & 5) 1. Discuss on various approximate methods of analysis for shear walls.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 13-02-2023

Semester : I Unit-V Shear walls

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 57 Duration of Lesson: 1hr

Lesson Title: Approximate methods of analysis for shear walls

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

4. Understand in methods of analysis against shear walls.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain various approximate methods of analysis for shear walls.

Assignment / Questions: (5 & 5) 1. Discuss on various approximate methods of analysis for shear walls.

Signature of faculty