Design of Prestressed Concrete Structures

(Sub Code: GR20D5022)

II Year M.Tech - I Semester
(AY 2021-22)

Mrs. K.Hemalatha (Asst. Professor)

Department of Civil Engineering Gokaraju Rangaraju Institute of Engineering and Technology

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Gokaraju Rangaraju Institute of Engineering and Technology Department of Civil Engineering Design of Prestressed Concrete Structures

Course File Check List

S.No.	Name of the Format	Page No.
1	Syllabus	
2	Time Table	
3	Program Educational Objectives	
4	Program Objectives	
5	Course Objectives	
6	Course Outcomes	
7	Students Roll List	
8	Guide lines to study the course books & references, course design & delivery	
9	Course Schedule	
10	Unit Plan/Course Plan	
11	Evaluation Strategy	
12	Assessment in relation to COB's and CO's	
13	Tutorial Sheets	
14	Assignment Sheets	
15	Rubric for course	
16	Mappings of CO's and PO's	
17	Model question papers	
18	Mid-I and Mid-II question papers	
19	Mid-I marks	
20	Mid-II marks	
21	Sample answer scripts and Assignments	
22	Course materials like Notes, PPT's, Videos, etc,.	

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering

M.Tech (Structural Engineering)

Course Name: Design of Prestressed Concrete Structures Course Code: GR20D5022

L: 3 T: 0 P:0 C:3

UNIT I Introduction to Prestressed Concrete: Materials - High strength concrete and High tensile steel - Pre-tensioning and Post tensioning methods – Systems of Prestressing.

Losses in Prestress: Losses in Prestress - Analysis of PSC flexural members –Basic concepts-Ultimate strength in flexure –Codal provisions.

UNIT II Statically Determinate PSC Beams: Design of flexural members for ultimate and serviceability limit states – Analysis and design for Shear and Torsion - Codal provisions.

UNIT III Design of End Bocks: Transmission of prestress in Pre-tensioned members – Anchorage zone stresses for Post-tensioned members.

UNIT IV Statically Indeterminate Structures: Analysis and design of continuous beams and frames – Choice of cable profile – Linear transformation and concordancy - Analysis and design of prestressed concrete Pipes and Columns with moments.

UNIT V Composite Construction: Analysis and design of composite construction with precast PSC beams and cast in situ RC slabs – Creep and Shrinkage effects – Partial prestressing principles, analysis and design concepts – Crack width calculations.

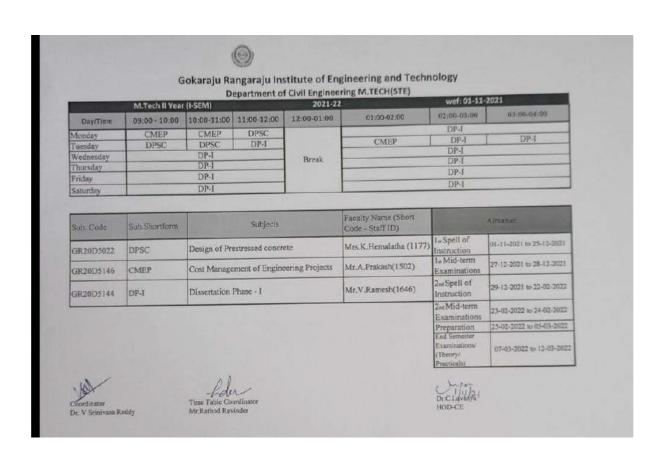
TEXT BOOKS:

- 1. Prestressed Concrete by Krishna Raju; Tata Mc.Graw Hill Publications.
- 2. Prestressed Concrete by N.Rajasekharan; Narosa publications.

REFERENCE BOOKS:

- 1. Prestressed Concrete by Ramamrutham; Dhanpatrai Publications.
- 2. Design of Prestressed concrete structures (Third Edition) by T.Y. Lin & Ned H.Burns, John Wiley & Sons.

Codes: IS 1343 - BIS code of practice for Prestressed concrete.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

DEPARTMENT OF CIVIL ENGINEERING

CLASS TIME TABLE

II YEAR-A SECTION ROOM NO: 4112 W.E.F: 01-11-2021

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Vision

To become a pioneering centre in Civil Engineering and technology with attitudes skills and knowledge.

Mission

M1: To produce well qualified and talented engineers by imparting quality education.

M2: To enhance the skills of entrepreneurship, innovativeness, management and life long learning in young engineers

M3: To inculcate professional ethics and make socially responsible engineers.

Programme Educational Objectives (PEOs)

PEO1: Graduates of the program will equip with professional expertise on the theories, process, methods and techniques for building high-quality structures in a cost-effective manner.

PEO2: Graduates of the program will be able to design structural components using contemporary softwares and professional tools with quality practices of international standards.

PEO3: Graduates of the program will be effective as both an individual contributor and a member of a development team with professional, ethical and social responsibilities.

PEO4: Graduates of the program will grow professionally through continuing education, training, research, and adapting to the rapidly changing technological trends globally in structural engineering.

Programme Outcomes(POs)

PO 1: An ability to independently carry out research / investigation and development to solve practical problems

PO 2: An ability to write and present a substantial technical report / document.

PO 3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's.

PO 4: Assess the impact of professional engineering solutions in an environmental context along with societal, health, safety, legal, ethical and cultural issues and the need for sustainable development.

PO 5: Possesses critical thinking skills and solves core, complex and multidisciplinary structural engineering problems.

PO 6: Recognize the need for life-long learning to improve knowledge and competence.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE OBJECTIVES

Academic Year : 2021-2022	Semester : 1
Name of the Program: M. Tech Structural Engg.	Year: II Year Section: A
Course/Subject : Design of Prestressed Concrete Structures	Course Code: GR20D5022
Name of the Faculty: Mrs K Hemalatha	Designation: Asst.Prof

Dept.: Civil Engineering

On completion of this Subject/Course the student shall be able to:

S.No	Objectives
1	Develop an advanced systems of prestressed concrete members
2	Analyze and design the statically determinate prestressed concrete members
3	Demonstrate the stresses with anchorage system in prestressed concrete members.
4	Analyze and design the statically indeterminate prestressed concrete members
5	Analyze and design the composite sections.

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE OUTCOMES

Academic Year	: 2021-2022	Semester	: I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

On completion of this Subject/Course the student shall be able to:

S.No	Outcomes
1	Find out the losses in prestressed concrete and enhance its concepts, which include pre and post tensioning processes.
2	Analyze and Design the statically determinate prestressed concrete members.
3	Design the end blocks of prestressed concrete members.
4	Analyze and Design the statically indeterminate prestressed concrete members.
5	Design the composite structures using prestressed concrete techniques.

Signature of HOD	Signature of faculty	
Date:	Date:	

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

M.Tech II Year I Sem (Structural Engineeering) Acedemic Year 2021-2022

Acedemic Year 2021-2022			
S.No	ROLL NUMBER NAME OF THE STUDENT		
1	20241D2001	ADUVALA RAJESH KHANNA	
2	20241D2002	DURGAM NISHIPRIYA	
3	20241D2003	ASHALA SHARATH KUMAR	
4	20241D2004	BODDUPALLI JAGADEESH	
5	20241D2005	BOODIDA RAKESH KUMAR	
6	20241D2006	H KARAN KUMAR	
7	20241D2007	JADAV PAVAN KALYAN	
8	20241D2008	JAKKULA SRINIVAS	
9	20241D2009	JANGA AJAY KUMAR	
10	20241D2010	JANGILI VIDYA SAGAR YADAV	
11	20241D2011	KANDI USHA SRI	
12	20241D2012	KOTLA SAI PRAKASH	
13	20241D2013	KOTTE SAI KRISHNA	
14	20241D2014	MADAM SAMKEERTHANA	
15	20241D2015	MADHIKUNTLA SHIREESHA	
16	20241D2016	MALYALA PRIYANKA	
17	20241D2017	MANDALA NAVEEN	
18	20241D2018	CHENNA JHANSI	
19	20241D2019	MOHAMMED YASIR HUSSAIN	
20	20241D2020	NARAPA SIVA BHASKAR REDDY	
21	20241D2021	POLU SIREESH KUMAR REDDY	
22	20241D2022	SAMA MADHAVI	
23	20241D2023	SHAIK ANSAR AHMED	
24	20241D2024	PANDRALA SANJANA	
25	20241D2025	GUGULOTHU AMRUTHAKALA	
26	20241D2026	JAGANNADHAM ROHITH KUMAR	
27	20241D2027	DAIDA VERONICA PRIYADHARSHINI	
28	20241D2028	ALETI GANESH	
29	20241D2029	KAKI SAI TULASI PRASANTHI	

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering

GUIDELINES TO STUDY THE COURSE SUBJECT

Academic Year : 2021-2022 Semester : I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

Guidelines to Students

Guidelines to study the Course: Design of Prestressed Concrete Structures

The course helps the students to learn the basics and concepts in Prestressed Concrete, High strength concrete and High tensile steel - Pre-tensioning and Post tensioning methods – Systems of Prestressing. Losses in Prestress - Analysis of PSC flexural members –Basic concepts-Ultimate strength in flexure –Codal provisions. Design of flexural members for ultimate and serviceability limit states – Analysis and design for Shear and Torsion. Transmission of prestress in Pre-tensioned members – Anchorage zone stresses for Post-tensioned members. Analysis and design of continuous beams and frames – Choice of cable profile – Linear transformation and concordancy - Analysis and design of prestressed concrete Pipes and Columns with moments. Analysis and design of composite construction with precast PSC beams and cast in situ RC slabs – Creep and Shrinkage effects – Partial prestressing principles, analysis and design concepts – Crack width calculations

So the students should have the prerequisites:

Engineering Mechanics, Strength of Materials, Structural Analysis, Concrete Technology, Design of Reinforced Concrete Structures and Design of Steel

Where will this subject help?

- Useful in calculation of Design of flexural members for ultimate and serviceability limit states.
- This course let the students to work with analysis and design for Shear and Torsion. Transmission of prestress in Pre-tensioned members.
- This course let the students to analysis and design of prestressed concrete Pipes and Columns with moments
- Analysis and design of composite construction with precast PSC beams and cast in situ RC slabs

BOOKS AND MATERIALS

Te	xt Books
1.	Prestressed Concrete by Krishna Raju; - Tata Mc.Graw Hill Publications.
2.	Prestressed Concrete by N.Rajasekharan; - Narosa publications

Sugg	Suggested / Reference Books		
1.	Prestressed Concrete by Ramamrutham; Dhanpatrai Publications		
2.	Design of Prestressed concrete structures (Third Edition) by T.Y. Lin & Ned H.Burns, John Wiley & Sons.		
3.	Codes: IS 1343 - BIS code of practice for Prestressed concrete.		
Web Sites			
1	https://nptel.ac.in/courses/105106117		
2	https://nptel.ac.in/courses		

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering

COURSE DESIGN AND DELIVERY SYSTEM (CDD)

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to -

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Signature of HOD	Signature of faculty
Date:	Date:

Gokaraju Rangaraju Institute of Engineering and Technology Department of Civil Engineering

COURSE SCHEDULE

Academic Year : 2021-2022 Semester : I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

The Schedule for the whole Course / Subject is:

		Duration (Date)		Total No.
S. No.	Description	From	То	Of Periods
1.	UNIT I	01-11-2021	07-12-2021	15
2.	UNIT II	07-12-2021	16-01-2022	11
3.	UNIT III	17-01-2022	01-02-2022	9
4.	UNIT IV	01-02-2022	14-02-2022	6
5.	UNIT V	14-02-2022	22-02-2022	7

1. Total No. of Instructional periods available for the course: 48 Hours / Periods

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Objectives & Bloom

References

Department of Civil Engineering SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2021-2022 Semester : I
Name of the Program: M. Tech Structural Engg.
Course/Subject : Design of Prestressed Concrete Structures
Name of the Faculty: Mrs K Hemalatha

Semester : I
Year: II Year Section: A
Course Code: GR20D5022
Designation: Asst.Prof

Dept.: Civil Engineering

No of

Unit No.	Lesson No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	Taxono my	References (Text Book, Journal) Page Nos.:to
	1.	01/11/20	1	Introduction to prestressed concrete	COB's - 1 CO's - 1	K1	674-675
	2.	02/11/20	1	Definitions involved in PSC	COB's - 1 CO's - 1	K2	674-675
	3.	02/11/20 21	1	Assumptions and materials	COB's - 1 CO's - 1	K2	674-680
	4.	08/11/20 21	1	Types of prestressing anddevices	COB's - 1 CO's - 1	K2	674-730
	5.	09/11/20 21	1	Bending stress concepts	COB's - 1 CO's - 1	K2	674-730
1.	6.	09/11/20 21	1	Problem Solving	COB's - 1 CO's - 1	K4	684-730
	7.	15/11/20 21	1	Problem Solving	COB's - 1 CO's - 1	K2	674-730
	8.	16/11/20 21	1	Pressure line Concept and problem	COB's - 1 CO's - 1	K1	674-730
	9.	22/11/20	1	Problem Solving	COB's - 1 CO's - 1	K4	674-675
	10.	23/11/20	1	Concept of load balancingand Problem Solving	COB's - 1 CO's - 1	K4	674-675
	11	23/11/20 21	1	Problem Solving	COB's - 1 CO's - 1	K4	674-680
	12	29/11/20 21	1	Cracking Moment andProblem Solving	COB's - 1 CO's - 1	K4	674-730
	13	30/11/20 21	1	Losses of Prestressing	COB's - 1 CO's - 1	K2	674-730

i				T		L	T
	14	06/12/20 21	1	Problem Solving	COB's - 1 CO's - 1	K4	684-730
	15	07/12/20 21	1	Problem Solving	COB's - 1 CO's - 1	K4	674-730
2.	16	07/12/20 21	1	Shear of PSC Beams	COB's -2 CO's -2	K1	425-426
	17	13/12/20 21	1	Problem Solving	COB's -2 CO's -2	K2	425-426
	18	14/12/20 21	1	Problem Solving	COB's -2 CO's - 2	K2	425-429
	19	14/12/20 21	1	Types of cracks and Problem solving	COB's -2 CO's -2	K2	425-429
	20	20/12/20 21	1	Torsion of PSC Beams	COB's -2 CO's - 2	K4	451-465
	21	21/12/20 21	1	Problem Solving	COB's -2 CO's -2	K1	482-483
	22	21/12/20 21	1	Design of Shear problem	COB's -2 CO's - 2	K1	482-514
	23	03/01/20 22	1	Design of Torsion problem	COB's -2 CO's - 2	K4	451
	24	04/01/20 22	1	Problem Solving	COB's -2 CO's - 2	K4	451
	25	04/01/20 22	1	Problem Solving	COB's –2 CO's - 2	K4	451
	26	16/01/20 22	1	Problem Solving	COB's -2 CO's - 2	K4	451
3.	27	17/01/20 22	1	Transfer of Prestress in Pretensioned member	COB's -3 CO's -3	K2	601-603
	28	17/01/20 22	1	Problem on transmissionlength	COB's -3 CO's -3	K4	601-622
	29	23/01/20 22	1	Problem on transmissionlength	COB's -3 CO's -3	K4	601-618
	31	24/01/20 22	1	Flexural bond stresses	COB's -3 CO's -3	K2	601
	32	24/01/20 22	1	Problem Solving	COB's -3 CO's -3	K4	601
	33	30/01/20 22	1	Problem Solving	COB's -3 CO's -3	K4	601-615
	34	31/01/20 22	1	Anchorage Zone or EndBlock	COB's -3 CO's -3	K2	601-610
	35	31/01/20 22	1	Problem Solving	COB's -3 CO's -3	K4	601-628
	36	01/02/20 22	1	Problem Solving	COB's -3 CO's -3	K4	620-646
4.	37	01/02/20 22	1	Analysis and design of continuous beam	COB's - 4 CO's - 4	K4	413-468
	38	07/02/20 22	1	Analysis and design of frame	COB's - 4 CO's - 4	K4	413-468
	39	07/02/20 22	1	Analysis and design of pipes	COB's - 4 CO's - 4	K4	413-468
	40	08/02/20 22	1	Analysis and design ofcolumns	COB's - 4 CO's - 4	K4	413-468
	41	08/02/20 22	1	Problem Solving	COB's - 4 CO's -4	K4	413-468
	42	14/02/20 22	1	Problem Solving	COB's - 4 CO's - 4	K4	413-468

5.	43	14/02/20 22	1	About compositeconstruction	COB's - 5 CO's - 5	K2	413-468
	44	15/02/20 22	1	Problem on propped construction	COB's - 5 CO's - 5	K4	1051-1090
	45	15/02/20 22	1	Differential shrinkage of composites	COB's - 5 CO's - 5	K2	1051-1090
	46	21/02/20 22	1	Deflections of composites	COB's - 5 CO's - 5	K2	1051-1090
	47	21/02/20 22	1	Problem Solving	COB's - 5 CO's - 5	K4	1051-1090
	48	22/02/20 22	1	Flexural and ShearStrength	COB's - 5 CO's - 5	K2	1051-1090
	49	22/02/20 22	1	Design of compositesection	COB's - 5 CO's - 5	K6	1051-1090

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-2022 Semester : I
Name of the Program: M. Tech Structural Engg.
Course/Subject : Design of Prestressed Concrete Structures
Name of the Faculty: Mrs K Hemalatha

Semester : I
Year Section: A
Course Code: GR20D5022
Designation: Asst.Prof

Dept.: Civil Engineering **Unit No: 1**

	Civil Eliginee	8		· · · · · · · · · · · · · · · · · · ·	110. 1	
Lesson No.	Date	No. of Perio ds	Topics / Sub - Topics	Objectives & Outcomes Nos.	Blooms Taxono my	References (Text Book, 2 by Krishna Raju) Page Nos.: to
1.	01/11/2021	1	Introduction to prestressed concrete	COB's - 1 CO's - 1	K1	674-675
2.	02/11/2021	1	Definitions involved in PSC	COB's - 1 CO's - 1	K2	674-675
3.	02/11/2021	1	Assumptions and materials	COB's - 1 CO's - 1	K2	674-680
4.	08/11/2021	1	Types of prestressing and devices	COB's - 1 CO's - 1	K2	674-730
5.	09/11/2021	1	Bending stress concepts	COB's - 1 CO's - 1	K2	674-730
6.	09/11/2021	1	Problem Solving	COB's - 1 CO's - 1	K4	684-730
7.	15/11/2021	1	Problem Solving	COB's - 1 CO's - 1	K2	674-730
8.	16/11/2021	1	Pressure line Concept and problem	COB's - 1 CO's - 1	K1	674-730
9.	22/11/2021	1	Problem Solving	COB's - 1 CO's - 1	K4	674-675
10.	23/11/2021	1	Concept of load balancing and Problem Solving	COB's - 1 CO's - 1	K4	674-675
11.	23/11/2021	1	Problem Solving	COB's - 1 CO's - 1	K4	674-680
12.	29/11/2021	1	Cracking Moment and Problem Solving	COB's - 1 CO's - 1	K4	674-730
13.	30/11/2021	1	Losses of Prestressing	COB's - 1 CO's - 1	K2	674-730
14.	06/12/2021	1	Problem Solving	COB's - 1 CO's - 1	K4	684-730
15.	07/12/2021	1	Problem Solving	COB's - 1 CO's - 1	K4	674-730

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year: 2021-2022Semester: IName of the Program:M. Tech Structural Engg.Year: II Year Section: ACourse/Subject: Design of Prestressed Concrete StructuresCourse Code: GR20D5022Name of the Faculty: Mrs K HemalathaDesignation: Asst.Prof

Dept.: Civil Engineering Unit No: 2

Lesso n No.	Date	No. of Peri ods	Topics / Sub – Topics	Objectives & Outcomes Nos.	Blooms Taxonomy	References (Text Book, 2 by B S Krishna Raju) Page Nos.: to
1.	07/12/2021	1	Shear of PSC Beams	COB's -2 CO's - 2	K1	425-426
2.	13/12/2021	1	Problem Solving	COB's -2 CO's -2	K2	425-426
3.	14/12/2021	1	Problem Solving	COB's -2 CO's -2	K2	425-429
4.	14/12/2021	1	Types of cracks and Problem solving	COB's -2 CO's -2	K2	425-429
5.	20/12/2021	1	Torsion of PSC Beams	COB's -2 CO's - 2	K4	451-465
6.	21/12/2021	1	Problem Solving	COB's -2 CO's -2	K1	482-483
7.	21/12/2021	1	Design of Shear problem	COB's -2 CO's - 2	K1	482-514
8.	03/01/2022	1	Design of Torsion problem	COB's -2 CO's - 2	K4	451
9.	04/01/2022	1	Problem Solving	COB's -2 CO's - 2	K4	451
10.	04/01/2022	1	Problem Solving	COB's -2 CO's - 2	K4	451
11.	16/01/2022	1	Problem Solving	COB's -2 CO's - 2	K4	451

Signature of HOD
Date:
Signature of faculty
Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year : 2021-2022 Semester : I
Name of the Program: M. Tech Structural Engg. Year: II Year Section: A
Course/Subject : Design of Prestressed Concrete Structures
Name of the Faculty: Mrs K Hemalatha
Course Code: GR20D5022
Designation: Asst.Prof

Dept.: Civil Engineering Unit No: 3

Lesson No.	Date	No. of Perio ds	Topics / Sub - Topics	Objectives & Outcomes Nos.	Blooms Taxonomy	References (Krishna Raju) Page Nos.:to
1.	17/01/2022	1	Transfer of Prestree in Pretensioned member	COB's -3 CO's -3	K2	601-603
2.	17/01/2022	1	Problem on transmission length	COB's -3 CO's -3	K4	601-622
3.	23/01/2022	1	Problem on transmission length	COB's -3 CO's -3	K4	601-618
4.	24/01/2022	1	Flexural bond stresses	COB's -3 CO's -3	K2	601
5.	24/01/2022	1	Problem Solving	COB's -3 CO's -3	K4	601
6.	30/01/2022	1	Problem Solving	COB's -3 CO's -3	K4	601-615
7.	31/01/2022	1	Anchorage Zone or End Block	COB's -3 CO's -3	K2	601-610
8.	31/01/2022	1	Problem Solving	COB's -3 CO's -3	K4	601-628
9.	01/02/2022	1	Problem Solving	COB's -3 CO's -3	K4	620-646

Signature of HOD	Signature of faculty
Date:	Date:

Gokaraju Rangaraju Institute of Engineering and Technology **Department of Civil Engineering** SCHEDULE OF INSTRUCTIONS **UNIT PLAN**

Academic Year : 2021-2022 Semester : I Name of the Program: M. Tech Structural Engg. Year: II Year Section: A **Course/Subject**: Design of Prestressed Concrete Structures Course Code: GR20D5022 **Designation:** Asst.Prof

Name of the Faculty: Mrs K Hemalatha

Dept.: Civil Engineering Unit No: 4

Lesson No.	Date	No. of Per iod s	Topics / Sub – Topics	Objectives & Outcomes Nos.	Blooms Taxonomy	References (by Krishna Raju) Page Nos.:to
1.	01/02/2022	1	Analysis and design of continuous beam	COB's - 4 CO's - 4	K4	413-468
2.	07/02/2022	1	Analysis and design of frame	COB's - 4 CO's - 4	K4	413-468
3.	07/02/2022	1	Analysis and design of pipes	COB's - 4 CO's - 4	K4	413-468
4.	08/02/2022	1	Analysis and design of columns	COB's - 4 CO's - 4	K4	413-468
5.	08/02/2022	1	Problem Solving	COB's - 4 CO's -4	K4	413-468
6.	14/02/2022	1	Problem Solving	COB's - 4 CO's - 4	K4	413-468

Signature of HOD	Signature of faculty
Date:	Date:

Gokaraju Rangaraju Institute of Engineering and Technology Department of Civil Engineering SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-2022 Semester : I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering Unit No: 5

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcomes Nos.	Blooms Taxonomy	References (Krishna Raju) Page Nos.: to
1.	14/02/2022	1	About composite construction	COB's - 5 CO's - 5	K2	413-468
2.	15/02/2022	1	Problem on propped construction	COB's - 5 CO's - 5	K4	1051-1090
3.	15/02/2022	1	Differential shrinkage of composites	COB's - 5 CO's - 5	K2	1051-1090
4.	21/02/2022	1	Deflections of composites	COB's - 5 CO's - 5	K2	1051-1090
5.	21/02/2022	1	Problem Solving	COB's - 5 CO's - 5	K4	1051-1090
6.	22/02/2022	1	Flexural and Shear Strength	COB's - 5 CO's - 5	K2	1051-1090
7.	22/02/2022	1	Design of composite section	COB's - 5 CO's - 5	K6	1051-1090

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/1/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:1 Duration of Lesson: <u>1hr</u>

Lesson Title: Introduction to prestressed concrete

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

1. Discuss different terminologies in Prestressing Concrete.

Teaching Aids : white board, Different colour markers Teaching Points :

Introduction to prestressed concrete

Assignment / Questions:

Explain basic assumptions in Prestressed Concrete Structures.
 Discuss about Tendons, Anchorages, Pre Tensioning.
 COB2, CO2

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/2/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:2 Duration of Lesson: <u>1hr</u>

Lesson Title: Definitions involved in

PSC

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

1. Assumptions in Prestressing concrete

Teaching Aids : white board, Different colour markersTeaching Points :

Different terminologies and materials used in Prestressing Concrete.

Assignment / Questions:

1. List few applications of Prestressing Concrete. COB1, CO1

2. Discuss the differences between Pre tensioning and Post Tensioning. COB1, CO1

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/2/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:3 Duration of Lesson: <u>1hr</u>

Lesson Title: Assumptions and materials

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Assumptions and materials

Teaching Aids : white board, Different colour markers Teaching Points :

Assumptions and materials

Assignment / Questions:

1. Explain in detail about different materials used in Prestressed Concrete. COB1, CO 1

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/8/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:4 Duration of Lesson: <u>1hr</u>

Lesson Title: Types of prestressing and devices

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

1. Discuss types of prestressing and devices used

Teaching Aids : white board, Different colour markersTeaching Points :

Types of prestressing and devices

Assignment / Questions:

1. Explain about the devices used in Prestressing. COB1, CO1

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/9/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:5 Duration of Lesson: <u>1hr</u>

Lesson Title: Bending stress concepts

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Bending stress concepts

Teaching Aids : white board, Different colour markersTeaching Points :

Bending stress concepts

Assignment / Questions:

1. Explain about analysis of pre stress and bending stress. COB1, CO1

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/9/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No: 6 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving in Prestressing beams

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving

Assignment / Questions:

1. A rectangular Concrete beam of 100mm wide and 250mm deep, spanning over 8m is prestressed by a straight cable carrying an effective force of 250KN located at an eccentricity of 40mm. Calculate the resultant stress distribution for the centre of span. COB1, CO1

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/15/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:7 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving

Teaching Aids : white board, Different colour markersTeaching Points :

Bending stress problems due to dead load and live load.

Assignment / Questions:

1. Find the magnitude of prestressing force with an eccentricity of 40mm which can balance the stresses due to dead load and live load at the soffit of beam. COB1,CO1

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/16/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:8 Duration of Lesson: <u>1hr</u>

Lesson Title: Pressure line Concept and problem

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Pressure line Concept and problem

Teaching Aids : white board, Different colour markersTeaching Points :

Pressure line Concept and problem

Assignment / Questions:

1. A rectangular concrete beam 250mm wide and 600mm deep is prestressed by means of 4 nos of 14mm dia located at 200mm from the soffit of the beam. If the effective stress in the wires is 700N/mm. What is the maximum bending moment that can be applied to the section without causing any tension at the soffit of the beam.

COB 1, CO1

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/22/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:9 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Pressure line Concept Problems

Teaching Aids : white board, Different colour markers Teaching Points :

Problem Solving on pressure line concept

Assignment / Questions:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/23/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:10 Duration of Lesson: 1hr

Lesson Title: Concept of load balancing and Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Concept of load balancing and Problem Solving

Teaching Aids : white board, Different colour markersTeaching Points :

Concept of load balancing and Problem Solving

Assignment / Questions:

1. Find the effective prestressing force in the parabola cable having eccentricity of 80mm at the centre of the span and concentric at the supports for the following Conditions. If the bending effect of the pre stressing force is nullified by imposed load neglecting self weight of beam.

COB1, CO1

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/23/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:11 Duration of Lesson: 1hr

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving

Assignment / Questions:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/29/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:12 Duration of Lesson: 1hr

Lesson Title: Cracking Moment and Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Cracking Moment and Problem Solving

Teaching Aids : white board, Different colour markersTeaching Points :

Cracking Moment and Problem Solving

Assignment / Questions:

1. Post tensioned concrete slab of length 8m, depth 300mm, width 200mm, eccentricity 100mm, live load of 2.56 KN/m. Calculate the increasing steel stress if the ducts are grouted so that the strain in steel and adjacent concrete is equal.

COB1, CO1

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 11/30/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:13 Duration of Lesson: <u>1hr</u>

Lesson Title: Losses of Prestressing

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Explain various Losses of Prestress

Teaching Aids : white board, Different colour markers Teaching Points :

Losses of Prestressing

Assignment / Questions:

1. Explain about various losses of Prestress in Concrete and factors affecting them.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 12/6/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:14 Duration of Lesson: 1hr

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving

Assignment / Questions:

1. Explain various losses of prestress in Pre tensioning and Post tensioning.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 12/7/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:15 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving

Teaching Aids : white board, Different colour markers Teaching Points :

Problem Solving

Assignment / Questions:

1. A rectangular section of 150mm X 300mm is prestressed by 8 high tensile wires of 7mm diameter located at 100mm from the soffit of the beam if the wires are tensioned to a stress of 1100 N/mm2. Calculate the % loss of stress due to elastic deformation. COB1,CO1

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 12/7/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:16 Duration of Lesson: <u>1hr</u>

Lesson Title: Shear of PSC Beams Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Shear of PSC Beams

Teaching Aids : white board, Different colour markersTeaching Points :

Shear of PSC Beams

Assignment / Questions:

1. A rectangular section of width 150mm and depth 300mm, eccentricity =100mm, Length is 8m, Live load of 2KN/m. Estimate principal stresses at the support section. Determine the effective force in the cable to balance dead load and live load. COB2, CO2

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 12/13/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:17 Duration of Lesson: 1hr

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to: Problem Solving in shear of Prestressed concrete beam.

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving

Assignment / Questions:

1. A rectangular section of width 250mm and depth 600mm, the beam is prestressed by parabolic cable with P=1000KN cable is concentric at the support, e=100mm at centre of span, L=10m, UDL=20KN/m, density =24KN/m3. Estimate the maximum principal stress developed in the section of beam at a distance of 300mm away from the support.

COB2, CO2

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 12/14/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:18 Duration of Lesson: 1hr

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving in principal stresses developed in the PSC beam.

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving in principal stresses developed in the PSC beam.

Assignment / Questions:

1. Calculate the magnitude of principal stress at a point 550mm from the top of cantilever beam at the support section. cantilever beam of length 8m carrying UDL of 60KN/m and 350KN at free end with c/s 600mm X 1000mm

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 12/14/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:19 Duration of Lesson: 1hr

Lesson Title: Types of cracks and Problem solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Types of cracks and Problem solving

Teaching Aids : white board, Different colour markersTeaching Points :

Types of cracks and Problem solving

Assignment / Questions:

1. Explain a brief note on web shear cracks and Flexural shear cracks.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 12/20/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:20 Duration of Lesson: 1hr

Lesson Title: Torsion of PSC Beams

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Torsion of PSC Beams

Teaching Aids : white board, Different colour markers Teaching Points :

Torsion of PSC Beams

Assignment / Questions:

1. The girder of I section is prestressed by a cable having initial stress of 6000KN. The last ratio is 0.85. Estimate Ultimate shear resistance. Width and depth of top flange= 1200X500mm Web of 150mm X 1500mm, width and dept of bottom flange = 300mm X 150mm

COB1, CO1

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 12/21/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:21 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Design of Shear Reinforcement

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving in shear reinforcement design.

Assignment / Questions:

1. A rectangular c/s of 150mm X 300mm , V=130Kn. The uniform prestress Fcp= 5 N/mm2, fck= 40N/mm2, fe 415, HYSD of 8mm diameter. Design suitable spacing of stirrups. Assume cover of 50mm. COB2, CO2

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 12/21/2021

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:22 Duration of Lesson: 1hr

Lesson Title: Design of Shear

problem

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Design of Shear problem

Teaching Aids : white board, Different colour markers Teaching Points :

Design of Shear problem

Assignment / Questions:

1. Discuss various steps involved in the design of shear reinforcement in Prestressed concrete beam COB2, CO2

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 1/3/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:23 Duration of Lesson: 1hr

Lesson Title: Design of Torsion

problem

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Design of Torsion problem

Teaching Aids : white board, Different colour markers Teaching Points :

Design of Torsion problem

Assignment / Questions:

1. Determine the maximum torque if the section is uniformly prestressed by a force of 450KN. The maximum permissible diagonal tensile stress in concrete is 0.63 N/mm2.

COB2, CO2

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 1/4/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:24 Duration of Lesson: 1hr

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving in shear and Torsion in Prestressed Concrete beam

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving in shear and Torsion in Prestressed Concrete beam

Assignment / Questions:

1. Determine the amount of non-Prestressed reinforcement required for the section if the torsional resistance moment of section is to be incurred to 345 KN-m. The permissible tensile stress in the steel is 230N/mm2. Use 50mm cover

COB2, CO2

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 1/4/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:25 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Design of longitudinal reinforcement in Prestressed concrete beam

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving in design of longitudinal reinforcement

Assignment / Questions:

1. Explain the detailed procedure involved in longitudinal reinforcement and transverse reinforcement. COB2, CO2

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 1/16/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:26 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving

Assignment / Questions:

1. Discuss about Skew bending theory. COB2, CO2

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 1/17/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:27 Duration of Lesson: <u>1hr</u>

Lesson Title: Transfer of Prestress in Pretensioned member

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Transfer of Prestress in Pretensioned member

Teaching Aids : white board, Different colour markersTeaching Points :

Transfer of Prestress in Pretensioned member

Assignment / Questions:

1. Discuss about Transmission Length using various theories. COB 3, CO 3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 1/17/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:28 Duration of Lesson: 1hr

Lesson Title: Problem on transmission length

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem on transmission length

Teaching Aids : white board, Different colour markersTeaching Points :

Problem on transmission length

Assignment / Questions:

1. Calculate the transmission length at the end of the pretensioned beam as per Hoyer's method using following data: L=50m, dia of wire =7mm COB3, CO3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 1/23/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:29 Duration of Lesson: 1hr

Lesson Title: Problem on transmission length

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem on transmission length

Teaching Aids : white board, Different colour markersTeaching Points :

Problem on transmission length

Assignment / Questions:

1. Estimate the transmission length at the end of a pretensioned beam prestressed by 7mm dia. Adopt Krishnamurthy empherical formula. Fck= 42 N/mm2 COB3, CO3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 1/24/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:30 Duration of Lesson: 1hr

Lesson Title: Flexural bond stresses

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to: Flexural bond stresses in Prestressed Concrete beam

Teaching Aids : white board, Different colour markersTeaching Points :

Flexural bond stresses

Assignment / Questions:

A rectangular cross section of 240mm X 500mm, length of 10m carrying point oads 250KN at 1/3rd distance from both simply supported ends. Compute bond stress between cable Hose and Concrete.
 COB3, CO3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 1/24/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:31 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving in bond stresses between cable and concrete

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving in bond stresses between cable and concrete

Assignment / Questions:

A rectangular cross section of 300mm X 600mm, length of 10m carrying point loads 350KN at 1/3rd distance from both simply supported ends. Compute bond stress between cable Hose and Concrete.
 COB3, CO3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 1/30/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:32 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving in bond stresses

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving in bond stresses

Assignment / Questions:

1. A rectangular cross section of 240mm X 500mm, length of 10m carrying point loads 250KN at 1/3rd distance from both simply supported ends. Compute bond stress between cable Hose and Concrete.

COB3, CO3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 1/31/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:33 Duration of Lesson: 1hr

Lesson Title: Anchorage Zone or End

Block

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Anchorage Zone or End Block

Teaching Aids : white board, Different colour markersTeaching Points :

Anchorage Zone or End Block

Assignment / Questions:

1. Discuss about anchorage zone stresses in Post tensioned members. COB3, CO3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 1/31/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:34 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving in anchorage zone stresses

Teaching Aids : white board, Different colour markersTeaching Points :

Anchorage zone stresses problem Solving

Assignment / Questions:

1. Discuss about various steps involved in determining Anchorage stresses. COB3,CO3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/1/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:35 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving in Anchorage stresses.

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving

Assignment / Questions:

1. A rectangular section of 200mm X 300mm with Prestressing force 2000KN acting at 75mm from top and bottom. COB3,CO3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/1/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:36 Duration of Lesson: 1hr

Lesson Title: Analysis and design of continuous beam

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Analysis and design of continuous beam

Teaching Aids : white board, Different colour markers Teaching Points :

adnvantages of continuous beamand its appications in PSC

Assignment / Questions:

1. Discuss about effect of prestressing in Continuous beams. COB4, CO4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/7/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:37 Duration of Lesson: <u>1hr</u>

Lesson Title: Analysis and design of

frame

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Analysis and design of Continuous beams

Teaching Aids : white board, Different colour markers Teaching Points :

Analysis and design of Continuous beams

Assignment / Questions:

1. A continuous prestressed concrete beam ABC (AB = BC = 10 m) has a uniform rectangular cross-section with a width of 100 mm and depth of 300 mm. The cable carrying an effective prestressing force of 360 kN is parallel to the axis of the beam and located at 100 mm from the soffit. (a) Determine the secondary and resultant moment at the central support B. (b) If the beam supports an imposed load of 1.5 kN/m, calculate the resultant stresses at top and bottom of the beam at B. Assume density of concrete as 24 kN/m. (e) Locate the resultant line of thrust through beam AB.

COB4, CO 4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/7/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:38 Duration of Lesson: <u>1hr</u>

Lesson Title: Analysis and design of

pipes

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Analysis of Continuous beams

Teaching Aids : white board, Different colour markers Teaching Points :

Analysis of Continuous beams

Assignment / Questions:

- A prestressed beam having a rectangular crOss section with a width of 120 mm and a depth of 300 nn is continuous over two spans. AB B 8 m. The cable with zero eccentuicily at Statically Indeterminate Structures 449 the ends and an eccentricity of 50 mm towards the top fibres of the beam over the central support, carries an effective force of 500 kN
 - (a) Calculate the secondary moment developed at B.
 - (b) If the beam supports concentrated loads of 20 kN each at mid-points of span, evaluate the resultant stresses at the central support section B.
 - (c) Locate also the position of the pressure line at section. COB 4, CO 4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/8/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:39 Duration of Lesson: <u>1hr</u>

Lesson Title: Analysis and design of columns

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Analysis and design of columns

Teaching Aids : white board, Different colour markersTeaching Points :

Analysis and design of columns

Assignment / Questions:

1. A two span continuous beam ABC is simply supported at A and C and continuous ov It is pre-stressed with straight cable which lies 100mm below CGC. Determine the second moment at 'B' if F = 120kN. Take AB BC = 8m. COB 4, CO 4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/8/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:40 Duration of Lesson: 1hr

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving

Assignment / Questions:

- 1. Beam of uniform section shown in Fig. 9.13 as pre-stress concrete with an effective pre-stressing force of 300kN.
 - a. Sketch the C-line due to the pre-stress alone
 - b. Suggest a concordant cable profile
 - C. Determine SM and secondary reactions
 - d. Also sketch the C-line when the span AB and BC carry imposed load of 15kN/m and 5kN/m respectively. Also determine the stress distribution across the section which lies at 'B.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/14/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:41 Duration of Lesson: 1hr

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving

Teaching Aids : white board, Different colour markers Teaching Points :

Problem Solving

Assignment / Questions:

1. Design a continuous PSC beam of two spans AB and BC of 12m in length to support a UDL of 10KN/m. Tensile stresses are not permitted in concrete and the compressive strength on concrete is not to exceed 13MPa.Sketch the details of the cable profile and check the stresses developed at the support and span sections.

COB4,CO4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/14/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:42 Duration of Lesson: 1hr

Lesson Title: About composite

construction

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to: Advantages and disadvantages about composite construction

Teaching Aids : white board, Different colour markers Teaching Points :

Advantages and disadvantages about composite construction

Assignment / Questions:

1. Explain briefly about advantages and disadvantages of Composite construction.

COB5,CO5

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/15/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:43 Duration of Lesson: 1hr

Lesson Title: Problem on propped construction

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem on propped construction

Teaching Aids : white board, Different colour markersTeaching Points :

Problem on propped construction

Assignment / Questions:

1. Mention the differences between propped and Unpropped construction.

COB5,CO5

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/15/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:44 Duration of Lesson: <u>1hr</u>

Lesson Title: Differential shrinkage of

composites

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Differential shrinkage of composites

Teaching Aids : white board, Different colour markersTeaching Points :

Differential shrinkage of composites

Assignment / Questions:

- 1. a) A composite T Beam is made up of a pretensioned rib 100 mm wide and 200 mm deep and a cast in situ slab, 400 mm wide and 40 mm thick having a modulus of elasticity of 28 KN/mm2. If the differential shrinkage is 100x10-6 units, estimate the shrinkage stresses developed in the precast and cast in situ units.
 - b) Select some typical cross section of composite bridge decks with precast prestressed elements and explain with neat sketch.

COB 5, CO5

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/21/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:45 Duration of Lesson: 1hr

Lesson Title: Deflections of

composites

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Deflections of composites

Teaching Aids : white board, Different colour markers Teaching Points :

Deflections of composites

Assignment / Questions:

1. a) A composite T-girder of span 5 m is made up of a pretensioned rib of 100 mm wide and 200 mm deep, with an in-situ cast slab of 400 mm wide and 40 mm thick. The rib is prestressed by a straight cable having an eccentricity of 33.33 mm and carrying an initial force of 150kN. The loss of prestress may be assumed to be 15%. Design and check the composite T-beam for the limit state of deflection if it supports an imposed load of 3.2 KN/m for unpropped construction. Assume E as 35kN/m2 for both.

COB5,CO5

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/21/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:46 Duration of Lesson: <u>1hr</u>

Lesson Title: Problem Solving

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Problem Solving

Teaching Aids : white board, Different colour markersTeaching Points :

Problem Solving

Assignment / Questions:

1. Summarize the advantages of using composite construction with prestressed and in situ concrete in structural members COB5,CO5

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/22/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:47 Duration of Lesson: <u>1hr</u>

Lesson Title: Flexural and Shear Strength

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Flexural and Shear Strength

Teaching Aids : white board, Different colour markersTeaching Points :

Flexural and Shear Strength

Assignment / Questions:

1. A composite T Beam is made up of a pretensioned rib 100 mm wide and 200 mm deep and a cast in situ slab, 400 mm wide and 40 mm thick having a modulus of elasticity of 28 KN/mm2. If the differential shrinkage is 100x10-6 units, estimate the shrinkage stresses developed in the precast and cast in situ units.COB5, CO5

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2/22/2022

Semester : II Year I Semester

Name of the Program : B.Tech Section : A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty : Mrs K Hemalatha Designation : Asst. Professor

Lesson No:48 Duration of Lesson: <u>1hr</u>

Lesson Title: Design of composite section

Instructional/Lesson Objectives:

On completion of this lesson the student shall be able to:

Design of composite section

Teaching Aids : white board, Different colour markersTeaching Points :

Design of composite section

Assignment / Questions:

1. Discuss various steps involved in the design of composite section. COB5, CO5

Gokaraju Rangaraju Institute of Engineering and Technology Department of Civil Engineering COURSE COMPLETION STATUS

Academic Year : 2021-2022 Semester : I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

Units	Remarks	No. of Objectives Achieved	No. of Outcomes Achieved
Unit 1	Covered on time	1	1
Unit 2	Covered on time	1	1
Unit 3	Covered on time	1	1
Unit 4	Covered on time	1	1
Unit 5	Covered on time	1	1

Signature of HOD	Signature of faculty
Date:	Date:

Gokaraju Rangaraju Institute of Engineering and Technology Department of Civil Engineering EVALUATION STRATEGY

Academic Year : 2021-2022 Semester : I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

1. TARGET:

a) Percentage for pass: 90%b) Percentage of class: Total Strength: 29

First class with distinction	17
First class	9
Pass class	3
Total strength (No's)	29

2. COURSE PLAN & CONTENT DELIVERY

•55 classes held for detailed demonstration of each topic and for analysis of problems in the class.

3 METHOD OF EVALUATION

3.1 Continuous Assessment Examinations

- Assignments: Assignments to assess the knowledge of the student on the basics and concepts in Prestressed Concrete, High strength concrete and High tensile steel Pretensioning and Post tensioning methods Systems of Prestressing. Losses in Prestress Analysis of PSC flexural members –Basic concepts- Ultimate strength in flexure –Codal provisions. Design of flexural members for ultimate and serviceability limit states Analysis and design for Shear and Torsion. Transmission of prestress in Pre-tensioned members Anchorage zone stresses for Post-tensioned members. Analysis and design of continuous beams and frames Choice of cable profile Linear transformation and concordancy Analysis and design of prestressed concrete Pipes and Columns with moments. Analysis and design of composite construction with precast PSC beams and cast in situ RC slabs Creep and Shrinkage effects Partial prestressing principles, analysis and design concepts Crack width calculations.
- Seminars: To assess the knowledge of the student in Prestressed Concrete.
- Quiz: To assess the knowledge of the student in various concepts and basics in Prestressed Concrete.
- Internal Examination: Internal Examinations to assess their overall knowledge in Prestressed Concrete.

3.2. Semester/End Examination

To test their abilities in the course Design of Prestressed Concrete Structures and toapprove their abilities learnt during the same.

4. List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this Semester.

Introduce drawing of reinforcement details.

Signature of	f HOD

Date:

Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440 Mappings of CO's, COB's Vs PO's, POB's

Course Objectives - Course Outcomes Relationship Matrix

Assessment:

- 1. Assignment 2. Internal Examination 3. External Examination
- 4. Practical Projects 5. Viva

GR20D5022/ Design of Prestressed Concrete Structures	Course Outcomes				
Course Objectives	1	2	3	4	5
1	X				
2		X			
3			X		
4				X	
5					X

GR20D5022/ Design of Prestressed Concrete Structures	Course Outcomes				
Assessments	1	2	3	4	5
1	X	X	X	X	X
2	X	X	X	X	X
3	X	X	X	X	X

GR20D5022/ Design of Prestressed Concrete Structures	Course	e Objec	tives		
Assessments	1	2	3	4	5
1	X	X	X	X	X
2	X	X	X	X	X
3	X	X	X	X	X

		1.Find out the losses in prestressed concrete and enhance its concepts, which include pre and post tensioning processes	M		М	М	Н	Н
GR20D	Design of	2.Analyze and Design the statically determinate prestressed concrete members.		M	Н	М	M	Н
5022	Concrete Structures	3.Design the end blocks of prestressed concrete members		M	Н	M	M	Н
		4.Analyze and Design the statically indeterminate prestressed concrete members		M	Н	M	M	Н
		5.Design the composite structures using prestressed concrete techniques		M	Н	M	M	Н

RUBRIC TEMPLATE

Academic Year : 2021-2022 Semester : I
Name of the Program: M. Tech Structural Engg.

Course/Subject : Design of Prestressed Concrete Structures
Name of the Faculty: Mrs K Hemalatha

Semester : I
Year Section: A
Course Code: GR20D5022
Designation: Asst.Prof

Dept.: Civil Engineering

Objective: To learn design aspects of prestressed concrete structures.

Student Outcome: Learn design concepts, use of code, design of elements such as beams,

columns and slabs against strength and serviceability.

			Beginning	Developing	Reflecting Development	Accomplishe d	Exemplary	Score
S. N o	Name of the Stude nt	Performance Criteria	1	2	3	4	5	
		The level of knowledge on basic requiremen ts for design	Low level of knowledge on basic rquirement s of design	Able to discuss the basic requireme nts of design	Ability to explain the basic requiremen ts of design	Full knowledge on basic requiremen ts of design	Analysing and implement ing the knowledg e of requireme nts of design	5
1	2024 1D20 15	The level of knowledge on design of structural elements.	Low level of knowledge on design of structural elements.	Able to discuss on design of structural elements.	Ability to explain design of structural elements.	Full knowledge on design of structural elements.	Analysing and application of knowledge on design of structural elements.	5
		The level of knowledge to analyse serviceabili ty of structural elements	Low level of knowledge to analyse serviceabili ty of structural elements	Ability to discuss and to study the serviceabil ity of structural elements	Ability to explain the serviceabili ty of structural elements.	Full knowledge on serviceabili ty of structural elements	Analysin g and implement ing the knowledge e of serviceabil ity of structural elements	5
						A	verage Score	

			Beginning	Developing	Reflecting Development	Accomplishe d	Exemplary	Score
S. N o	Name of the Stude nt	Performance Criteria	1	2	3	4	5	
		The level of knowledge on basic requiremen ts for design	Low level of knowledge on basic rquirement s of design	Able to discuss the basic requireme nts of design	Ability to explain the basic requiremen ts of design	Full knowledge on basic requiremen ts of design	Analysing and implement ing the knowledg e of requireme nts of design	4
1	2024 1D20 24	knowledge on design	Low level of knowledgeon design of structural elements.	Able to discuss on design of structural elements.	Ability to explain design of structural elements.	Full knowledge on design of structural elements.	Analysing and application of knowledge on design of structural elements.	4
		The level of knowledge to analyse serviceabili ty of structural elements.	Low level of knowledge to analyse serviceabili ty of structural elements.	Ability to discuss and to study the serviceabil ity of structural elements.	Ability to explain the serviceab ili ty of structural elements.	Full knowledge on serviceabili ty of structural elements.	Analysin g and implement ing the knowledg e of serviceabil ity of structural elements.	4
						Av	verage Score	4

			Beginning	Developing	Reflecting Development	Accomplished	Exemplary	Score
S. N o	Name of the Stude nt	Performance Criteria	1	2	3	4	5	
		The level of knowledge on basic requiremen ts for design	Low level of knowledge on basic rquirement s of design	Able to discuss the basic requireme nts of design	Ability to explain the basic requiremen ts of design	Full knowledge on basic requiremen ts of design	Analysing and implement ing the knowledg e of requireme nts of design	3
1	2024 1D20 18	The level of knowledge on design of structural elements.	Low level of knowledgeon design of structural elements.	Able to discuss on design of structural elements.	Ability to explain design of structural elements.	Full knowledge on design of structural elements.	Analysing and application of knowledge on design of structural elements.	3
		The level of knowledge to analyse serviceabili ty of structural elements.	Low level of knowledge to analyse serviceabili ty of structural elements.	Ability to discuss and to study the serviceabil ity of structural elements.	Ability to explain the serviceab ili ty of structural elements.	Full knowledge on serviceabili ty of structural elements.	Analysin g and implement ing the knowledg e of serviceabil ity of structural elements.	3
						A	verage Score	3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440 ASSIGNMENT SHEET I

Academic Year : 2021-2022 Semester I
Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

1. Distinguish between pre and post tensioning method.

CO 1. K2

- 2. A prestressed concrete beam of section 120 mm wide and 300 mm deep is used over an effective span of 6 m to support a udl of 4 kN/m, which includes the self-weight of the beam. The beam is prestressed by straight cable carrying a force of 180 KN and located at an eccentricity of 50 mm. Solve the location of the thrust line in the beam and plot its position at quarter and central span section.

 CO 1, K3
- 3. A prestressed concrete beam, 200 mm wide and 300 mm deep, is prestressed with wires area is equal to 320 mm2 located at a constant eccentricity of 50 mm and carrying an initial stress of 1000 N/mm2. The span of the beam is 10 m. Calculate the percentage loss of stress in wires in pre tensioning and post tensioning using the following data: Es 210 kN/mm2, relaxation of stress in steel 5% of initial stress, shrinkage of concrete 300x10⁻⁶ for pre tensioning and 200x10⁻⁶ for post tensioning, creep coefficient is 1.6 and slip at anchorage is 1 mm. CO 1, K4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440 TUTORIAL SHEET I

Academic Year : 2021-2022 Semester I
Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

1. Explain about analysis of pre stress and bending stress.

Course/Subject: Design of Prestressed Concrete Structures

CO 1, K2

Course Code: GR20D5022

- 2. A rectangular Concrete beam of 100mm wide and 250mm deep, spanning over 8m is prestressed by a straight cable carrying an effective force of 250KN located at an eccentricity of 40mm. Calculate the resultant stress distribution for the centre of span. CO 1, K3
- 3. A prestressed concrete beam, 150 mm wide and 250 mm deep, is prestressed with wires area is equal to 300 mm² located at a constant eccentricity of 45 mm and carrying an initial stress of 900 N/mm2. The span of the beam is 10 m. Calculate the percentage loss of stress in wires in pre tensioning and post tensioning using the following data: Es 210 kN/mm2, relaxation of stress in steel 5% of initial stress, shrinkage of concrete 300x10⁻⁶ for pre tensioning and 200x10⁻⁶ for post tensioning, creep coefficient is 2 and slip at anchorage is 1 mm.

CO 1, K4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440 ASSIGNMENT SHEET II

Academic Year : 2021-2022 Semester I
Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

- A cantilevered portion of prestressed concrete bridge with a rectangular cross section 600 mm wide and 1650 mm deep is 8 m long and carries a reaction of 350 kN from the suspended span at the free end, together with a udl of 60 kN/m inclusive of its own weight. The beam is prestressed by seven cable each carrying a force of 1000 kN, of which three are located at 150 mm, three at 400 mm and one at 750 mm from the top edge. Simplify the magnitude of the principal stresses at a point 550 mm from the top of cantilever at the supports.
- 2. A rectangular Concrete beam of 100mm wide and 250mm deep, spanning over 8m is prestressed by a straight cable carrying an effective force of 250KN located at an eccentricity of 40mm. Examine the resultant stress distribution for the centre of span. CO 2, K4
- 3. A rectangular c/s of 150mm X 300mm , V=130Kn. The uniform prestress Fcp= 5 N/mm2, fck= 40N/mm2, fe 415, HYSD of 8mm diameter. Analyze suitable spacing of stirrups. Assume cover of 50mm.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440 TUTORIAL SHEET II

Academic Year : 2021-2022 Semester I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

1. Explain various steps involved in the design of shear reinforcement in Prestressed concrete beam CO 2, K2

2. Determine the maximum torque if the section is uniformly prestressed by a force of 450KN. The maximum permissible diagonal tensile stress in concrete is 0.63 N/mm2.

CO 2, K4

3. Determine the amount of non-Prestressed reinforcement required for the section if the torsional resistance moment of section is to be incurred to 345 KN-m. The permissible tensile stress in the steel is 230N/mm2. Use 50mm cover

CO 2, K4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440 ASSIGNMENT SHEET III

Academic Year : 2021-2022 Semester I
Name of the Program : M. Tech Structural Engg. Year: II Year Section: A

Course/Subject : Design of Prestressed Concrete Structures Course Code: GR20D5022

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

1. Analyze the transmission length at the ends of a pretensioned beam prestressed by 7-mm diameter wires. Assume the cube strength of concrete at transfer as 42 N/mm² CO 3, K4

- 2. A rectangular cross section of 240mm X 500mm, length of 10m carrying point oads 250KN at 1/3rd distance from both simply supported ends. Examine bond stress between cable Hose and Concrete.

 CO 3, K4
- 3. The end block of prestressed concrete girder is 200 mm wide and 300 mm deep. The beam is post tensioned by two Freyssinet anchorages each of 100 mm diameter with their centres located at 75 mm from the top and bottom of the beam. The force transmitted by each anchorage being 2000kN. Simplify the bursting force and design suitable reinforcements as perIS1343.

 CO3,K4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440 TUTORIAL SHEET III

Academic Year : 2021-2022 Semester I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

1. Discuss about anchorage zone stresses in Post tensioned members CO 3, K2

2. Estimate the transmission length at the ends of a pretensioned beam prestressed by 7-mm diameter wires. Assume the cube strength of concrete at transfer as 42 N/mm².

CO 3, K4

3. A pre-stressed concrete beam 250 mm wide and 650 mm deep is subjected to an effective prestressing force of 1360 kN along the longitudinal centroidal axis. The cables are placed symmetrically over mild steel anchor plate of area 150 mm x 350 mm. Design the end block. Take the characteristic strength of concrete and its cube strength at transfer as 30 N/mm². Assume initial prestressing force=1.2 times the effective prestressing force.

CO3,K4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440 ASSIGNMENT SHEET IV

Academic Year : 2021-2022 Semester I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

- 1. A continuous prestressed concrete beam ABC (AB=BC=10 m) has a uniform rectangular cross section with a width of 100 mm and depth of 300 mm. The cable carrying an effective prestressing force of 360 kN is parallel to the axis of the beam and located at 100 mm from the soffit. Simplify the secondary and resultant moment at the central support B and locate the resultant line of thrust through beam AB.

 CO 4, K4
- 2. A two pinned portal frame 9 m high with a span of 15 m is to be designed to support a uniformly distributed live load of 14.6 kN/m on the transom. The permissible stresses are not to exceed 14 N/mm² in compression with zero tension. Design the frame and sketch the details of the concordant profile in the legs and transom.

 CO 4, K5
- 3. A two span continuous beam ABC is simply supported at A and C and continuous. It is prestressed with straight cable which lies 100mm below CGC. Analyze the second moment at 'B' if F = 120kN. Take AB BC = 8m.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440 TUTORIAL SHEET IV

Academic Year : 2021-2022 Semester I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept.: Civil Engineering

- 1. Beam of uniform section shown in Fig. 9.13 as pre-stress concrete with an effective pre-stressing force of 300kN
 - a. Sketch the C-line due to the pre-stress alone
 - b. Suggest a concordant cable profile
 - c. Determine SM and secondary reactions
 - d. Also sketch the C-line when the span AB and BC carry imposed load of 15kN/m and 5kN/m respectively. Also determine the stress distribution across the section which lies at 'B. CO 4, K5
- 2. Design a continuous PSC beam of two spans AB and BC of 12m in length to support a UDL of 10KN/m. Tensile stresses are not permitted in concrete and the compressive strength on concrete is not to exceed 13MPa.Sketch the details of the cable profile and check the stresses developed at the support and span sections.

 CO 4, K5
- 3. A two-span continuous beam ABC is simply supported at A and C and continuous. It is prestressed with straight cable which lies 100mm below CGC. Analyze the second moment at 'B' if F = 200kN. Take AB BC = 10m.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENT SHEET V

Academic Year : 2021-2022 Semester: I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Course/Subject: Design of Prestressed Concrete Structures Code: GR20D5022

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept. : Civil Engineering

1. Design a precast prestressed inverted T section to be used in a composite slab of total depth 600 mm and width 300 mm. The composite slab is required to support an imposed load of 16 kN/m2 over a span of 14 m. The compressive stress in concrete at transfer and the tensile stress under working loads may be assumed to be 20 N/mm2 and 1 N/mm2 respectively. The loss ratio is 0.85. determine the prestressing force required for the section

CO 5, K5

- 2. A composite T Beam is made up of a pretensioned rib 100 mm wide and 200 mm deep and a cast in situ slab, 400 mm wide and 40 mm thick having a modulus of elasticity of 28 kN/mm². If the differential shrinkage is 100×10^{-6} units, determine the shrinkage stresses developed in the precast and cast in situ units.
- 3. A composite T Beam is made up of a pretensioned rib 100 mm wide and 200 mm deep and a cast in situ slab, 400 mm wide and 40 mm thick having a modulus of elasticity of 28 KN/mm2. If the differential shrinkage is 100x10-6 units, estimate the shrinkage stresses developed in the precast and cast in situ units.

 CO5,K4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET V

Academic Year : 2021-2022 Semester: I

Name of the Program: M. Tech Structural Engg. Year: II Year Section: A

Course/Subject: Design of Prestressed Concrete Structures Code: GR20D5022

Name of the Faculty: Mrs K Hemalatha Designation: Asst.Prof

Dept. : Civil Engineering

- 1. A composite T Beam is made up of a pretensioned rib 100 mm wide and 200 mm deep and a cast in situ slab, 400 mm wide and 40 mm thick having a modulus of elasticity of 28 kN/mm². If the differential shrinkage is 100x10⁻⁶ units, determine the shrinkage stresses developed in the precast and cast in situ units.

 CO 5, K4
- 2. A composite T-girder of span 5 m is made up of a pretensioned rib of 100 mm wide and 200 mm deep, with an in situ cast slab of 400 mm wide and 40 mm thick. The rib is prestressed by a straight cable having an eccentricity of 33.33 mm and carrying an initial force of 150kN. The loss of prestress may be assumed to be 15%. Check the composite T-beam for the limit state of deflection if it supports an imposed load of 3.2 kN/m for (a) unpropped construction and (b) propped construction. Assume E as 35kN/m² for both.

 CO 5, K5
- 3. Design a composite slab for the bridge deck using a standard inverted I section. The top flange is 250mm wide and 100 mm thick. The bottom flange is 500 mm wide and 250mm thick. The web thickness is 100mm and over all depth of the section is 655 mm. it has to support a live load of 50 kN/m² over an effective span of 12 m. Using M40 grade for pretensioned beam at a transfer of 36 N/mm² and M30 for cast in situ slan. Determine the minimum prestress necessary.CO5,K5

M.Tech II Year I Semester Regular Examinations, March 2022 DESIGN OF PRESTRESSED CONCRETE

Model Question Paper

(Structural Engineering)

Time: 3 hours Max Marks: 70

Instructions:

- 1. Question paper comprises of Part-A and Part-B
- **2.Part-A** (for 20 marks) must be answered at one place in the answer book.
- **3.Part-B** (for 50 marks) consists of **five questions with internal choice**, answer all questions.

PART – A

(Answer ALL questions. All questions carry equal marks)

10 * 2 = 20 Marks

1. a.	Explain the principle of prestressing.	[2]
b.	What are the advantages of prestressed concrete?	[2]
c.	What is curvature effect?	[2]
d.	Explain the effect of torsion on prestressed concrete sections.	[2]
e.	State the assumptions made in the analysis of prestressed concrete flexural members	[2]
f.	What are the various methods generally used for the investigation of anchorage zone stressed?	[2]
g.	Explain about concordancy.	[2]
h.	What are cap cables and where are they used?	[2]
i.	What is the influence of differential shrinkage on composite prestressed concrete members?	[2]
j.	List the commonly used method to analyse secondary moments in prestressed concrete continuous members.	[2]

 $PART-B \\ (Answer ALL \ questions. \ All \ questions \ carry \ equal \ marks \) \\ 5*10=50 \ Marks$

2. A prestressed concrete beam supports a live load of 4kN/m over a simply supported span of 8m. The beam has an I-section with an overall depth of 400mm. The thickness of the flange and web are 60 and 80mm, respectively. The width of the flange is 200mm. They beam is to be prestressed by an effective prestressing force of 235kN at a suitable eccentricity such that the resultant stress at the soffit of the beam at the centre of the span is zero. Find the eccentricity required for the force. If the tendon is concentric, what should be the magnitude of the prestressing force for the resultant stress to be zero at the bottom fiber of the central span section.

OR

3. (a) Explain the limitations of prestressed concrete.

[10]

(b) A prestress concrete beam spanning over 8m is of rectangular section, 150mm wide and 300mm deep. The beam is prestressed by a parabolic cable having an eccentricity of 75mm below the centroidal axis at centre of span and an eccentricity

eccentricity of 75mm below the centroidal axis at centre of span and an eccentricity of 25mm above the centroidal axis at the support sections. The initial force in the cable s 350kN. The beam supports three concentrated loads of 10kN each atintervals of 2m. E_c = 38kN/mm².Neglecting losses of prestress, estimate the short-term deflection due to (prestress+ self weight); and Allowing for 20% loss inprestress, estimate the long-term deflection under (prestress+ self weight+ live load), assuming creep coefficient as 1.80.

4. A PSC beam of effective span 15m is of rectangular section 500mm wide and 1000mm [10] deep. A tendons consist of 3600mm^2 of strands of characteristic strength 1700 N/mm² with an effective prestress of 910 N/mm^2 . The strands are located 870mm from the top face of the beam. If $f_{cu} = 60 \text{ N/mm}^2$, estimate the flexural strength of the section as per BS provisions for the following cases: (i)Bonded tendons (ii) Unbonded tendons.

OR

5. (a) Explain the various losses of prestress in post-tensioned members.

[10]

- (b) A prestressed girder of rectangular section 150 mm wide and 300 mm deep, is to be designed to support an ultimate shear force of 130 kN. The uniform prestress across the section is 5 N/mm². Design the suitable spacing for the stirrups as per IS1343-2012. Take Fe415, M40 and an effective cover as 50 mm.
- 6. A high-tensile cable comprising 12 strands of 15 mm diameter (12K15 of PSC Freyssinet system) with an effective force of 2500 kN is anchored concentrically in an end block of a post- tensioned beam. The end block is 400 mm wide by 800 mm deep and the anchor plate is 200 mm wide by 260 mm deep. Design suitable anchorage zone reinforcements using Fe-415 grade HYSD bars using IS:1343 code provisions. [10]

- 4. Design an I-section for a simply supported post-tensioned concrete beam of span 18 m [10] subjected to an imposed load of 25 kN/m over its entire span. The permissible tensile stress in steel is 1250 N/mm² and the permissible stresses in concrete are: At transfer: 20 N/mm² (Compression) and 2.5 N/mm² (Tensile). At working load: 15 N/mm² (Compression) and 1.5 N/mm² (Tensile).
 - 8. A prestressing force of 400 kN is to be transmitted through a distribution plate [10] 200 mm \times 150 mm, the centre of which is located at 150 mm from the bottom of an end block of section 200 mm \times 400 mm. Determine the position and magnitude of maximum tensile stress on a horizontal section passing through the centre of the distribution plate.

OR

- **9.** A continuous prestressed concrete beam ABC (AB = BC = 10 m) has a uniform rectangular cross-section with a width of 100 mm and depth of 300 mm. The cable carrying an effective prestressing force of 360 kN is parallel to the axis of the beam and located at 100 mm from the soffit.
- (i) Determine the secondary and resultant moment at the central support B.
- (ii) If the beam supports an imposed load of 1.5 kN/m, calculate the resultant stresses attop and bottom of the beam at B. Assume density of concrete as 24 kN/m^3 .
- 10. A simply supported pre-tensioned concrete beam of cross-section 200 mm× [10] 350 mm has an effective span of 8 m, is prestressed by tendons with their centroid is 150 mm from the bottom of the beam. The initial prestressing force in tendons is 400 kN. The beam is incorporated in a composite T-beam by casting a top flange of width 450 mm and thickness 60 mm. If the composite beam is subjected to a live load of 15 kN/m², determine the resultant stresses developed in the precast and cast-in-situ concrete assuming the pre-tensioned beam is propped. Adopt the loss of prestress as 20% and the modulus of elasticity of concrete in precast and cast-in-situ is the same.
- 11. A two-span continuous concrete beam ABC (AB=BC=12 m) has a rectangular section, 300 mm wide & 800 mm deep. The beam is prestressed by a cable carrying an effective force of 700 kN. The cable has a linear profile in the span AB & parabolic profile in span BC. The eccentricities of the cable are +50 mm at A, -100 mm at a distance of 7 m from A & +200 mm at support B & -200 mm at mid span of BC (- below and + above centroidal axis). Sketch the line of thrust in the beam if it supports a uniformly distributed load of 5 KN/m which includes the self-weight of the beam. Find the resultant stress distribution at the mid- support section.[10]

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING & TECHNOLOGY

(Autonomous)

IIM.TechI Semester Mid- IExaminations DESIGN OF PRESTRESSED CONCRETE

(Structural Engineering)

Time: 90 Minutes Max Marks: 20

	SUBJECTIVE (Answer ALL questions. All questions carry equal marks)Time: 75 Minutes3 * 5 =15 Marks			
1	A prestressed concrete beam of section 120 mm wide and 300 mm deep is used over an effective span of 6 m to support a udl of 4 kN/m, which includes the self-weight of the beam. The beam is prestressed by straight cable carrying a force of 180 KN and located at an eccentricity of 50 mm. Determine the location of the thrust line in the beam and plot its position at quarter and central span section.	[5]	СО	BL
2	(a) Distinguish between pre and post tensioned members.(b) Explain the need for high strength steel and concrete in prestressedconcrete structures.	[5]	CO	BL
3	A cantilevered portion of prestressed concrete bridge with a rectangular cross section 600 mm wide and 1650 mm deep is 8 m long and carries a reaction of 350 kN from the suspended span at the free end, together with a udl of 60 kN/m inclusive of its own weight. The beam is prestressed by seven cable each carrying a force of 1000 kN, of which three are located at 150 mm, three at 400 mm and one at 750 mm from the top edge. Calculate the magnitude of the principal stresses at a point 550 mm from the top of cantilever at the supports.	[5]	СО	BL
4	A prestressed girder of rectangular section 150 mm wide and 300 mm deep, is to be designed to support an ultimate shear force of 130 kN. The uniform prestress across the section is 5 N/mm2. Design the suitable spacing for the stirrups as per IS1343-2012. Take Fe415, M40 and an effective cover as 50 mm.	[5]	СО	BL
5	(a) Discuss aboutweb cracks and shear cracks with the help of sketches.(b) Explain the effect of torsion on prestressed concrete sections.	[5]	CO	BL
6	A prestressed concrete beam, 200 mm wide and 300 mm deep, is prestressed with wires area is equal to 320 mm2 located at a constant eccentricity of 50 mm and carrying an initial stress of 1000 N/mm2. The span of the beam is 10 m. Calculate the percentage loss of stress in wires in pre tensioning and post tensioning using the following data: E_s = 210 KN/mm2, relaxation of stress in steel 5% of initial stress, shrinkage of concrete 300×10^{-6} for pre tensioning and 200×10^{-6} for post tensioning, creepcoefficient is 1.6 and slip at anchorage is 1 mm.	C	O B	L

	OBJECTIVE	
	Multiple Choice Questions (MCQs)	
	(Answer ALL questions. All questions carry equal marks)	
	15 Minutes10 * ¹ / ₂ = 5 Marks	
1	Loss of stress due to elastic deformation of concrete depends upon	[]
	(a) Relaxation of Steel (b) Friction and Anchorage Slip	
	(c) Modular Ratio (d) None	
2	Loss of stress due to friction depends upon	[]
	(a) Modulus of Elasticity of Concrete (b) Coefficient of Friction	
	(c) Relaxation of Steel (d) All the above	
3	Horizontal or axial prestressing of concrete beams	[]
	(a) Reduces the shear strength of the member	
	(b) Has no effect on the shear strength	
	(c) Increases the shear strength (d) All the above	
4	Ultimate shear strength of prestressed beams failing due to flexure-shear	[]
	cracks isinfluenced by	
	(a) The width of the section (b) Effective prestress after all loses	
	(c) Tensile strength of concrete (d) Shear strength of concrete.	
5	The ideal cross-section recommended to resist shear and torsion in bridge	r 1
	girders is	ſ J
	(a) Rectangular (b) Tee (c) Hollow box (d) I section	
6	Eccentric tendons in a concrete beam section induce	r 1
U		L J
	(a) Only direct stress (b) Only bending stress	
	(c) Direct and bending stress (d) Only Shear stress	r 1
7	Uniformly distributed load on a concrete beam can be effectively counter	l J
	balancedby selecting	
	(a) a Concentric cable (b) an Eccentric cable	
	(c) a Parabolic cable (d) a Trapezoidal cable	
8	Resultant stress in the cross-section of a prestressed beam comprises of	[]
	(a) Prestress + Dead-Load stress + Live-Load stress	
	(b) Prestress + Dead-Load stress	
	(c) Prestress + Live-Load stress	
	(d) Dead Load + Live Load	
9	At the end face of a pretensioned beam the tensile stress in steel is	[]
	(a) Maximum (b) Zero (c) Minimum (d) Cannot define	
10	At a distance equal to the transmission length from the end face of a	[]
	pretensioned beam, the force in the tendon is	
	(a) Zero	
	(b) 50 per cent of the initial prestressing force	
	(c) Equal to the initial prestressing force	
	(d) 75 per cent of the initial prestressing force	

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING & TECHNOLOGY

(Autonomous)

IIM.TechI Semester Mid-IIExaminations

DESIGN OF PRESTRESSED CONCRETE

(Structural Engineering)

Time: 90 Minutes Date of Exam:23-02-2022 Max Marks: 20

	Time: 90 Minutes Date of Exam:23-02-2022 Max Marks:	<u> 40</u>		
	SUBJECTIVE			
	(Answer ALL questions. All questions carry equal marks)			
	Time: 75 Minutes3 * 5 =15 Marks			
1	Estimate the transmission length at the ends of a pretensioned beam	[5]	CO3	BL3
	prestressed by 7-mm diameter wires by using Krishna Murthy empirical			
	relation. Assume the cube strength of concrete at transfer as 42 N/ mm ²			
2	A pre-stressed concrete beam 250 mm wide and 650 mm deep is subjected	[5]	CO3	BL4
	to an effective prestressing force of 1360 kN along the longitudinal			
	centroidal axis. The cables are placed symmetrically over mild steel anchor			
	plate of area 150 mm x 350 mm. Design the end block. Take the			
	characteristic strength of concrete and its cube strength at transfer as 30			
	N/mm ² . Assume initial prestressing force=1.2 times the			
	effective prestressing force.			
3	A continuous prestressed concrete beam ABC (AB=BC=10 m) has a	[5]	CO4	BL4
	uniform rectangular cross section with a width of 100 mm and depth of 300	[C]	00.	DD.
	mm. The cable carrying an effective prestressing force of 360 kN is parallel			
	to the axis of the beam and located at 100 mm from the soffit. Determine the			
	secondary and resultant moment at the central support B and locate the			
	resultant line of thrust through beam AB		~~.	
4	A prestressed girder of rectangular section 150 mm wide and 300 mm deep,	[5]	CO4	BL4
	is to be designed to support an ultimate shear force of 130 KN. The uniform			
	prestress across the section is 5 N/mm2. Design the suitable spacing for the			
	stirrups as per IS1343-2012. Take Fe415, M40 and an effective cover as 50			
	mm.			
5	A composite T-girder of span 5 m is made up of a pretensioned rib of 100mm	[5]	CO5	BL5
	wide and 200 mm deep, with an in-situ cast slab of 400 mm wide and			
	40 mm thick. The rib is prestressed by a straight cable having an			
	eccentricity of 33.33 mm and carrying an initial force of 150kN. The loss of			
	prestress may be assumed to be 15%. Check the composite T-beam forthe limit state of deflection if it supports an imposed load of 3.2 KN/m for			
	unpropped construction. Assume E as 35kN/m ² for both			
6	A composite T Beam is made up of a pretensioned rib 100 mm wide and 200	[5]	CO5	BL5
	mm deep and a cast in situ slab, 400 mm wide and 40 mm thick having a	[~]		
	modulus of elasticity of 28 KN/mm ² . If the differential shrinkageis 100x10 ⁻⁶			
	units, determine the shrinkage stresses developed in the precast and cast in			
	situ units.			

OBJECTIVE Multiple Choice Questions (MCQs) (Answer ALL questions. All questions carry equal marks) Time: 10 Minutes Date: 23-02-202210 * 1/2 = 5 Marks The resultant stresses in concrete at any section are obtained by the effect of 1 (a) Prestress and torsion stresses(b) Prestress and shear stresses (c) Prestress and flexural stresses(d) Prestress and bending stresses 2 The concept of pressure line is very useful in understanding the concept of (a) Bending mechanism (b) Shear mechanism (c) Torsion mechanism (d) Load carrying mechanism The soffit of the beam after the transfer of prestress to concrete will be under 3 (a) Bondage (b) Breakage (c) Compression (d) Tension 4 If the direct stresses are compressive, then the magnitude of principal stresses in prestressed concrete member gets (a) Zero (b) Increased (c) Decreased (d) Constant 5 The ultimate shear resistance of prestressed concrete with web shear cracking but without flexural crakes & mainly governed by (a) Zero (b) Limiting value(c) Infinity(d) Constant In the anchorage zone or the end block of a post tensioned prestressed concrete 6 element, the state of stress distribution is considered as (a) Unity(b) Zero (c) Complex (d) Easy 7 Due to the effect of composite action sizes of precast prestressed units can be (a) Serviced(b) Increased (c) No change(d) Reduced 8 Concordant cable profile is ſ (a) that produce no support reaction due to prestressing (b) parabolic in nature (c) produce no bending moment at the supports of beam (d) laid corresponding to axial stress diagram 9 The prestressed concrete member develops deformation under the influence of (a) Self weight(b) Stress strain diagram (c) Flexural moments (d) Prestress and transverse loads 10 At a distance equal to the transmission length from the end face of a pretensioned beam, the force in the tendon is (a) Zero (b) 50 per cent of the initial prestressing force (c) Equal to the initial prestressing force 75 per cent of the initial prestressing force

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous)

Department of Civil Engineering STRUCTURAL ENGINEERING Mid II Examination Attendance Sheet

Sub: Design of Prestressed Concrete Structures

Room No: 4112 Date:22/02/22 (FN)

S.No	ROLL NUMBER	NAME OF THE STUDENT	Booklet No	Signature
1	20241D2001	ADUVALA RAJESH KHANNA	414042	01
2	20241D2002	DURGAM NISHIPRIYA	414057	Mary
3	20241D2003	ASHALA SHARATH KUMAR	414058	Askelt
4	20241D2004	BODDUPALLI JAGADEESH	84524	B. Jogade
5	20241D2005	BOODIDA RAKESH KUMAR	414076	Pak
6	20241D2006	H KARAN KUMAR	414065	H. Waran Kno
7	20241D2007	JADAV PAVAN KALYAN	414072	Book
8	20241D2008	JAKKULA SRINIVAS	414036	J 15 1
9	20241D2009	JANGA AJAY KUMAR	414056	g. start
10	20241D2010	JANGILI VIDYA SAGAR YADAV	414059 -	4200
11	20241D2011	KANDI USHA SRI	414074	k. ushar sni
12	20241D2012	KOTLA SAI PRAKASH	414068	KOHOLD .
13	20241D2013	KOTTE SAI KRISHNA	414071	Part
14	20241D2014	MADAM SAMKEERTHANA	- ARSENT	
15	20241D2015	MADHIKUNTLA SHIREESHA	414055	sterees
16	20241D2016	MALYALA PRIYANKA	414060	Baryanka.
17	20241D2017	MANDALA NAVEEN	414067	(I dancely
18	20241D2018	CHENNA JHANSI	414070	Thony "
19	20241D2019	MOHAMMED YASIR HUSSAIN	414046	autin
20	20241D2020	NARAPA SIVA BHASKAR REDDY	414061	NSival
21	20241D2021	POLU SIREESH KUMAR REDDY	414066	PSTEA
22	20241D2022	SAMA MADHAVI	113119	oky .
23	20241D2023	SHAIK ANSAR AHMED	414048.	Ansar
24	20241D2024	PANDRALA SANJANA	414053	Sajana.
25	20241D2025	GUGULOTHU AMRUTHAKALA	414062.	AN
26	20241D2026	JAGANNADHAM ROHITH KUMAR	414063	J-Rowth 1
27	20241D2027	DAIDA VERONICA PRIYADHARSHINI	414064.	allympack
28	20241D2028	ALETI GANESH	414069	Ahanesh V
29	20241D2029	KAKI SAI TULASI PRASANTHI	414075	I CKP.

No of Students Present: 28 No of Students Absent: 01 Total No of Students: 29

Faculty Signature

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

Department of Civil Engineering M.Tech II-I (STE) ATTENDANCE SHEET

Room No: 4112 MID 3 FXAMINATION Date:27/12/21 (FN)

Room No: 4112		MID 3 EXAMINATION		Date:27/12/21 (FN)
S.No	ROLL NUMBER	NAME OF THE STUDENT	Booklet No	Signature
1	20241D2001	ADUVALA RAJESH KHANNA	394561	02
2	20241D2002	DURGAM NISHIPRIYA	394560	Matalan A. 8
3	20241D2003	ASHALA SHARATH KUMAR 394562	294561	1 A.S
4	20241D2004	BODDUPALLI JAGADEESH	394563	Lycdees
5	20241D2005	BOODIDA RAKESH KUMAR	113117	auth
6	20241D2006	H KARAN KUMAR	394565	H. Koran Mar.
7	20241D2007	JADAV PAVAN KALYAN	394566	Monthle
8	20241D2008	JAKKULA SRINIVAS	394567	J. Shinvay
9	20241D2009	JANGA AJAY KUMAR	394580	4. grang
10	20241D2010	JANGILI VIDYA SAGAR YADAV	394571	tronger
11	20241D2011	KANDI USHA SRI	394576	v. whe mi
12	20241D2012	KOTLA SAI PRAKASH	394573	K. Olph
13	20241D2013	KOTTE SAI KRISHNA	394174	det.
14	20241D2014	MADAM SAMKEERTHANA	394570	Keelthavans
15	20241D2015	MADHIKUNTLA SHIREESHA	394581	starias
16	20241D2016	MALYALA PRIYANKA	394568	Polyanka.
17	20241D2017	MANDALA NAVEEN	394569	Chareer
18	20241D2018	CHENNA JHANSI	394570	aJohn
19	20241D2019	MOHAMMED YASIR HUSSAIN	394 58 2	grupin_
20	20241D2020	NARAPA SIVA BHASKAR REDDY	394583	N. Sird
21	20241D2021	POLU SIREESH KUMAR REDDY	394584	PIEL
22	20241D2022	SAMA MADHAVI	394585	S.Madhavi
23	20241D2023	SHAIK ANSAR AHMED	394589	Ansay
24	20241D2024	PANDRALA SANJANA	394579	Smigne
25	20241D2025	GUGULOTHU AMRUTHAKALA	394586	AN
26	20241D2026	JAGANNADHAM ROHITH KUMAR	394587	J. Rohith
27	20241D2027	DAIDA VERONICA PRIYADHARSHINI	3945%	Verluman
28	20241D2028	ALETI GANESH	394588	A hunesh
29	20241D2029	KAKI SAI TULASI PRASANTHI	394577	(VP.

No of Students Present: 29 No of Students Absent: NIL Total No of Students: 29

Faculty Signature

1. M. Sarada

Gokaraju Rangaraju Institute of Engineering & Technology

M.Tech II Year I Semester STRUCTURAL ENGINEERING

DPSC MID I EXAMINATION

S.No	Roll No	Student Name	Obj(5M)	Sub(15M)	Total(20M)
1	20241D2001	ADUVALA RAJESH KHANNA	3	12	15
2	20241D2002	DURGAM NISHIPRIYA	3	13	16
3	20241D2003	ASHALA SHARATH KUMAR	3	15	18
4	20241D2004	BODDUPALLI JAGADEESH	4	14	18
5	20241D2005	BOODIDA RAKESH KUMAR	3	11	14
6	20241D2006	H KARAN KUMAR	2	4	6
7	20241D2007	JADAV PAVAN KALYAN	3	13	16
8	20241D2008	JAKKULA SRINIVAS	4	13	17
9	20241D2009	JANGA AJAY KUMAR	3	9	12
10	20241D2010	JANGILI VIDYA SAGAR YADAV	3	8	11
11	20241D2011	KANDI USHA SRI	4	6	10
12	20241D2012	KOTLA SAI PRAKASH	3	14	17
13	20241D2013	KOTTE SAI KRISHNA	3	11	14
14	20241D2014	MADAM SAMKEERTHANA	3	11	14
15	20241D2015	MADHIKUNTLA SHIREESHA	3	15	18
16	20241D2016	MALYALA PRIYANKA	2	15	17
17	20241D2017	MANDALA NAVEEN	3	10	13
18	20241D2018	CHENNA JHANSI	2	10	12
19	20241D2019	MOHAMMED YASIR HUSSAIN	4	14	18
20	20241D2020	NARAPA SIVA BHASKAR REDDY	4	15	19
21	20241D2021	POLU SIREESH KUMAR REDDY	3	11	14
22	20241D2022	SAMA MADHAVI	5	14	19
23	20241D2023	SHAIK ANSAR AHMED	5	15	20
24	20241D2024	PANDRALA SANJANA	4	10	14
25	20241D2025	GUGULOTHU AMRUTHAKALA	4	15	19
26	20241D2026	JAGANNADHAM ROHITH KUMAR	5	14	19
27	20241D2027	DAIDA VERONICA PRIYADHARSHINI	2	14	16
28	20241D2028	ALETI GANESH	5	14	19
29	20241D2029	KAKI SAI TULASI PRASANTHI	2	10	12

Gokaraju Rangaraju Institute of Engineering & Technology

M.Tech II Year I Semester STRUCTURAL ENGINEERING DPSC MID II EXAMINATION

S.No	Roll No	Student Name	Obj(5M)	Sub(15M)	Total(20M)			
1	20241D2001	ADUVALA RAJESH KHANNA	4	11	15			
2	20241D2002	DURGAM NISHIPRIYA	2	11	13			
3	20241D2003	ASHALA SHARATH KUMAR	2	12	14			
4	20241D2004	BODDUPALLI JAGADEESH	1	11	12			
5	20241D2005	BOODIDA RAKESH KUMAR	3	14	17			
6	20241D2006	H KARAN KUMAR	2	11	13			
7	20241D2007	JADAV PAVAN KALYAN	2	9	11			
8	20241D2008	JAKKULA SRINIVAS	4	7	11			
9	20241D2009	JANGA AJAY KUMAR	4	9	13			
10	20241D2010	JANGILI VIDYA SAGAR YADAV	2	7	9			
11	20241D2011	KANDI USHA SRI	3	11	14			
12	20241D2012	KOTLA SAI PRAKASH	2	8	10			
13	20241D2013	KOTTE SAI KRISHNA	2	12	14			
14	20241D2014	MADAM SAMKEERTHANA		AB				
15	20241D2015	MADHIKUNTLA SHIREESHA	3	15	18			
16	20241D2016	MALYALA PRIYANKA	1	13	14			
17	20241D2017	MANDALA NAVEEN	2	8	10			
18	20241D2018	CHENNA JHANSI	2	11	13			
19	20241D2019	MOHAMMED YASIR HUSSAIN	2	12	14			
20	20241D2020	NARAPA SIVA BHASKAR REDDY	3	13	16			
21	20241D2021	POLU SIREESH KUMAR REDDY	3	13	16			
22	20241D2022	SAMA MADHAVI	1	12	13			
23	20241D2023	SHAIK ANSAR AHMED	3	13	16			
24	20241D2024	PANDRALA SANJANA	1	12	13			
25	20241D2025	GUGULOTHU AMRUTHAKALA	2	12	14			
26	20241D2026	JAGANNADHAM ROHITH KUMAR	2	12	14			
27	20241D2027	DAIDA VERONICA PRIYADHARSHINI	2	14	16			
28	20241D2028	ALETI GANESH	2	12	14			
29	20241D2029	KAKI SAI TULASI PRASANTHI	3	13	16			

Gokaraju Rangaraju Institute of Engineering & Technology

(Autonomous College Affiliated to JNTUH)

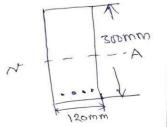
(12 Pages)

2003333 (CERLLIA		Bachupally, Kukatpally, Hyderabad - 50009								0		_	-Ail	
	I	I II MID TERM EXAMINATION												Det -
No.	39	4586		H.T. No.		१०		55505		D				5-
Name of	the Examinat	ion [nd year	8 Mite	ech	1	st n	ii4	Z	NON	N'IN	$a_{\mathcal{F}}$	6 Λ	•
Course 4	Prestre	ssed	ance	ete Branc	h_ S	TE			_ Da	ate	27	112	121	
									Sign	M	-Sa e of th	ne In	o vigil	ator
	O.NO	1	2	3	4	Т	5	6	Т	TC	TAI	\neg		

B = 120mm

D = 300 mm.

span (1) = 6m = 6000mm.


wude = uxN/m.

P = 180×103 N/mm2.

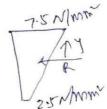
e = somm.

e) Prestressing force

 $\frac{P}{A} = \frac{180 \times 10^3}{120 \times 300} = 5 \text{ N/mm}^2$

*

Kad bottom >

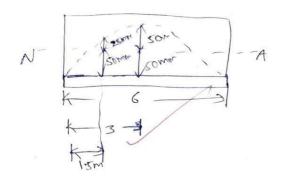

5+5-18=-8 N/mm.

The state of t

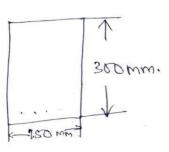
moment at suater Position of section:

$$M = \frac{3 \times U \times 6600}{32} = 13.5 \times 10^6 \, \text{N.mm}.$$

* Resultant Stresses:



· 180x4 5-5+ 7.5 = 7.5 N/mm?


* At bottom =)

5+5-7.5 = 2.5 N/mm2

$$\frac{13.5\times10^6}{P} = \frac{13.5\times10^6}{180\times10^3} = 75$$
 # Annoyn

(4)

hiven data:

B = 150 mm

D = 300 mm. , = 250 mm.

shear force v=130KN.

Sep = 5 N/mm.

* fy = ws N/mm

* fex = no N/mm

* Effective cover = 50mm.

=) Vco = 0.6760 \(\(\xi_{t}^{2} + 0.8 \xi_{c} \xi_{t} \)

ft = 0 24 Jfcx

ft = 0.24x Tuo

ft - 1.5/78 mm

Vco = 0.67x 180x300 \((1.517) 7+ 0.8x5x (1.517)

NEO = 301901

Vco =87.22×103 N.mm.

Vco < V

87-22KNK 130KN.

* when you I shear seinforcement shall

be provided.

$$\frac{ASV}{SV} = \frac{V - VC}{0.874ydt}$$

ASV = 2x 1 x 2

· Provide somm diameter in two

ASV = 2X 7 X82

= 100.530mm.

SV- 0.87X WISX 250X100:53

Sv = 14u.837x103 N/mm.

. Spacing of stirruls = 0.79 + (08) uxwepthing

= 0.7x250 = 175mm.

V exceed = 1.8 VC = 1.8 × 87.22 = 156.99 then steduced o. 521

= 0.5 x 250 = 125 mm/

6 hiven data:

B = 2000mm.

D = 300mm.

ASRON = 320 mm.

€ = somm.

Es = 210N/mm

Ec = 85 N/mm

Relaxation of steel =5% of initial Stress.

· Shrinkark of concrete = 300×106 for pre-

POST tonsioning = 200x106.

- · Creek coefficient = 1.6.
- · Sile anchorage is=1mm.

* Prestressing force =
$$A\times EP$$

$$= 320 \times 1000$$

$$P = 320 \times N$$

$$R I = \frac{b63}{12} = \frac{200\times300^3}{12} = 450\times10^6 \text{ N/mm}^2$$

$$*2 = \frac{6}{6} = \frac{200 \times 300}{6} = \frac{3 \times 10^6}{6}$$

$$*M - \frac{w^2}{8} = \frac{320 \times 10^3 \times 1000}{8} = 4 \times 10^{10} \text{ Mm}^2$$

$$= \left(\frac{210}{35}\right) \times fc$$

$$\frac{Re}{2} = \frac{320\times10^{3}\times50}{3\times10^{6}} = 5.33 \text{ mm}$$

(i) => Elastic deformation in Pre-tensioning = (210) karage = 22.74 N/mm =

post rengions -> No losses (-)

- (2) Relaxation of Stress in steel = 51/x1000 Pre & Post tensioning = 50 phm
- 3) Shankage of concre in Bre-rensioning = 300 x10 & 210x16 = 63x103. Whom

for Post tensioning = 200x10 x 210x106 = 42x 103 Nmm

- (1) creep coefficient = 1.6 x 22.79 = 36.4 N/mm.
- S) Slip anchorage: = 1/10/103 × 100 = 0.0/ N/mm
- (1) total 1088 of stress = Pre tensioning = 172.14. N/mm.

* 1088 of Prestress in past rensioning = 128 UNIMM

- =) Percentage of Presension loss of stress = 17.2 /
 - => Percentage of past tension 1088 of Stress = 12.1/01
- Distinguish between pre and post tensioned mamber.

Poe-tension

* In a Pre-tensioned

in which the tendors

one tensioned before

coxcreting.

* The catinate of

is a used for

Post-tension

* In a post-tensioned

A method of Prestressing

concrete in which

prestressing steel is

tensioned against the

harden concrete.

* The shandle lood

on no beading not

bond.

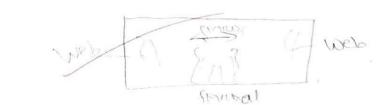
Energy boses Sporter about like

to Post-tensioned has

*In a Pre-tensioned the course wires are in Straight inc. It can be placed in Incimed or curve but is is difficult.

stor pergass

+ In Post-tensioned


has a 1888 losses

compared to Pre
tension.

the wives are placing so much easy to pack to pack to pack tensioning.

5a) * They are two types of cracks.

a) web crack b) shear crack.

* web coacles are the interior Part and
Shear cracks are the inclied Part.

* The coacles are Placed in inclined

* The Gentle Crack is a become of fleminal.

Coacles.

Gokaraju Rangaraju Institute of Engineering & Technology

(Autonomous College Affiliated to JNTUH)

(12 Pages)

Bachupally, Kukatpally,	Hyderabad - 500090
-------------------------	--------------------

-st fire		ipally, Kukatpally, Hyd		
	I II N	IID TERM EXAN	IINATION	
No.	414047	H.T. No. 2 0	241D2018	
Name of the E	Examination I M.	Tech I sem 1st	MiD	
Course	DPSC	Branch Structu	ual Engg. Date 23/2/2022	
			Signature of the Invigilator	
-	Q.NO. 1 a b a	2 3 4 a b a b a b a	5 6 TOTAL b a b O (s)	
	!	START WRITING FROM	HERE	1
	exed force	= 1000 KN. JAX	60 KN/m 350 KN	
	750	mm 400 150	0 0 0 165	550

$$= \frac{750 \times 1 + 400 \times 3 + 150 \times 3}{750 + 4000 + 150 \cdot 1 + 3 + 3}$$

$$\overline{G} = \frac{P}{A} + \frac{PeY}{I} - \frac{M}{I}.$$

prestrused jorce = Pxe. 1880 *7 = 7000 KN.

$$M = 350 \times 8 + \frac{60 \times 8^2}{2}$$

= 4720 KN.m

$$67 = \frac{7000 \times 10^{3}}{600 \times 825} + \frac{7000 \times 482 \times 412.5 \times 10^{3}}{600 \times 825^{3}}$$

$$-\frac{4720 \times 1 \times 10^{3}}{600 \times 825^{3}}$$

$$\sigma = 63.71 \text{ N/mm}^{2}$$

$$7 = \frac{VAY}{I.b}$$

 $V = 350 + 60 \times 8$

= 830 KN.

$$Z = 830 \times 10^{3} \times 600 \times 825 \times \left[350 + \frac{550}{2}\right]$$

600 x 8253 × 600

= 15.24 N/mm 2

principal struses = 5 ± 52+472

$$= \frac{63.71}{2} + \sqrt{63.71^2 + 4\times15.24^2}$$

= 102.48 N/mm 2

= -38.77 N/mm2

Max. principal stress = 102.48 MPa

Min. principal strus = -38.77 Mpg

Gokaraju Rangaraju Institute of Engineering & m

(Autonomous Coll.

5

Given data

Area of wire = 320 mm²

e = 50 mm

Intial Stress = 1000 N/mm2

:L = 10 mm

Assume Ec = 200 KN/mm 2 Relaxation of stress = 5 10 of initial stress

Es = 300 × 106 der pre tensioning

Es = 200 × 10 by post tensioning

Slip at anchorage = 1 mm

Losses of prestress	pre tensioning	post tensioning
Elastic dejormation of steel	Es Xfc. => 11-2	
Relaxation of Steel	5% & I.S 50	. 50

creep d'concrete	$\phi_{e} \times \frac{\xi_{s}}{\epsilon_{c}} \times f_{c}$ \Rightarrow 17.92	17.92
shrinkage	Es x Es =) 63.	42.
Slip at anchorage		$\frac{10\times10^{3}}{21}$
Total loss of prestress	142.12	130.92
% total loss d prestress	14.21%	13.9.1.

$$f_c = \frac{P}{A} + \frac{Pey}{I}$$

P = Areax Intial stress

= 320 X1000

= 320 × 103 KN.

$$f_{C} = \frac{320 \times 10^{3}}{200 \times 300} + \frac{320 \times 10^{3} \times 50 \times 150}{200 \times 300^{3}}$$

fc = 10.67 N/mm2

Gokaraju Rangaraju Institute of Engineering & Technology

(Autonomous College Affiliated to JNTUH)

(12 Pages)

Bachupally, Kukatpally, Hyderabad - 500090

H. Karantmort

Ĭ	II	MID TERM EXAMINATION

No.

394565 H.T. No. 202410206

Name of the Examination Design of Prestressed concrete

Course I MTECH I semester Branch Stawctural Engg Date 2-1/12/20.

M. Sarada Signature of the Invigilator

Q.NO.	1		2	2	1	3	1	1	1	5	(5	TOTAL
	a	b	a	b	a	b	a	b	a	b	a	b	IOIAL
MARKS							1				2		Ч

START WRITING FROM HERE

上

Given data

b = 150 mm

d = 300mm

V = 130 KN

for = 40 mm

fy = 415

Fup = 5 N/mm2

Prusturing form 320 x 1000
P= 320 km

show in consoler at least of steel $f_c = \frac{P}{A} + \frac{Pey}{T}$ $= \frac{320}{6 \times 10^5} + \frac{320 \times 50 \times 50}{(200 \times 300^3)}$

F = 3.8 N/mm2

Pre

Post

elastic deformation of converte.

Es x f L = 210 x 8:8 = 22.8

relaxation of stress

0.05 × 10 00

50.

strinkage of convicte

300 X 10 6 x 2 10 X 10 6

200 X 10 X 210 X 10 1

Oreep co-efficient

1.6 x 22.8

anhorage

10×105 ×210×103 =21

total how of struss

172.75

149.48

1. of los

17.23%

14.95%

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING & TECHNOLOGY

(Autonomous)

II M.Tech I Semester Mid- I Examinations DESIGN OF PRESTRESSED CONCRETE

(Structural Engineering)

	(Structural Engineering)	
	OBJECTIVE	
	Multiple Choice Questions (MCQs)	
	(Answer ALL questions. All questions carry equal marks)	
Time	2: 15 Minutes 10 * 1	$l_2 = 5 \text{ Marks}$
1	Loss of stress due to elastic deformation of concrete depends upon	1010
	(a) Relaxation of Steel (b) Friction and Anchorage Slip	, C
	(c) Modular Ratio (d) None	
2	Loss of stress due to friction depends upon	[4]
	(a) Modulus of Elasticity of Concrete (b) Coefficient of Friction	1 6 1/
	(c) Relaxation of Steel (d) All the above	
3	Horizontal or axial prestressing of concrete beams	101/
	(a) Reduces the shear strength of the member	1 0 1
	(b) Has no effect on the shear strength	
	(c) Increases the shear strength (d) All the above	
4	Ultimate shear strength of prestressed beams failing due to flexure-shear	16
salt.	cracks isinfluenced by	101
	(a) The width of the section (b) Effective prestress after all loses	
	(c) Tensile strength of concrete (d) Shear strength of concrete.	1
5	The ideal cross-section recommended to resist shear and torsion in bridge	10
	girders is	1 00 1
	(a) Rectangular (b) Tee (c) Hollow box (d) I section	
6	Eccentric tendons in a concrete beam section induce	ICI
	(a) Only direct stress (b) Only bending stress	. – 1
	(c) Direct and bending stress (d) Only Shear stress	
7	Uniformly distributed load on a concrete beam can be effectively counter	
-43	balancedby selecting	
	(a) a Concentric cable (b) an Eccentric cable	
	(c) a Parabolic cable (d) a Trapezoidal cable	
	(0) # 1 # 1 # 1 # 1 # 1 # 1	
8	Resultant stress in the cross-section of a prestressed beam comprises of	lal
O	(a) Prestress + Dead-Load stress + Live-Load stress	. 00
	(b) Prestress + Dead-Load stress	
	(c) Prestress + Live-Load stress	
	(d) Dead Load + Live Load	
0	At the end face of a pretensioned beam the tensile stress in steel is	[6]
9	(a) Maximum (b) Zero (c) Minimum (d) Cannot define	1 0 1
10	At a distance equal to the transmission length from the end face of a	161
10	At a distance equal to the transmission length from the end face of a	1 0 1
	pretensioned beam, the force in the tendon is	
	(a) Zero	
	(b) 50 per cent of the initial prestressing force	
	(c) Equal to the initial prestressing force (d) 75 per cent of the initial prestressing force	
	(d) 75 per cent of the initial presidessing lorge	

A. Sharath kumar 2024-102003

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING & TECHNOLOGY

(Autonomous)

II M.Tech I Semester Mid- I Examinations DESIGN OF PRESTRESSED CONCRETE

(Structural Engineering)

A Stalk

	OBJECTIVE	
	Multiple Choice Questions (MCQs)	
	(Answer ALL questions. All questions carry equal marks)	
	ne: 15 Minutes 10 *	$l_2 = 5 \text{ Marks}$
1	Loss of stress due to elastic deformation of concrete depends upon	lal
	(a) Relaxation of Steel (b) Friction and Anchorage Slip	
_	(c) Modular Ratio (d) None	
2	Loss of stress due to friction depends upon	16
	(a) Modulus of Elasticity of Concrete (b) Coefficient of Friction	
	(c) Relaxation of Steel (d) All the above	
3	Horizontal or axial prestressing of concrete beams	161
	(a) Reduces the shear strength of the member	
	(b) Has no effect on the shear strength	
	(c) Increases the shear strength (d) All the above	
4	Ultimate shear strength of prestressed beams failing due to flexure-shear	1 C 1
	cracks isinfluenced by	
	(a) The width of the section (b) Effective prestress after all loses	
_	(c) Tensile strength of concrete (d) Shear strength of concrete.	101
5	The ideal cross-section recommended to resist shear and torsion in bridge	[a]
	girders is	
,	(a) Rectangular (b) Tee (c) Hollow box (d) I section Eccentric tendons in a concrete beam section induce	101
6	(a) Only direct stress (b) Only bending stress	101
	(c) Direct and bending stress (d) Only Shear stress	
7	Uniformly distributed load on a concrete beam can be effectively counter	1alb
1	balancedby selecting	1 00 1
	(a) a Concentric cable (b) an Eccentric cable	
	(c) a Parabolic cable (d) a Trapezoidal cable	
	(c) a randone cable (d) a rispersonal	
8	Resultant stress in the cross-section of a prestressed beam comprises of	[a]
0	(a) Prestress + Dead-Load stress + Live-Load stress	1 00 1
	(b) Prestress + Dead-Load stress	
	(c) Prestress + Live-Load stress	
	(d) Dead Load + Live Load	,
	At the end face of a pretensioned beam the tensile stress in steel is	101
)	(a) Maximum (b) Zero (c) Minimum (d) Cannot define	
6	At a distance equal to the transmission length from the end face of a	101
0	pretensioned beam, the force in the tendon is	. 0 .
	(a) Zero (b) 50 per cent of the initial prestressing force	
	(c) Equal to the initial prestressing force	
	(d) 75 per cent of the initial prestressing force	
	(d) /5 per cent of the limital prestressing force	

2024102029

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING & TECHNOLOGY

(Autonomous)

II M.Tech I Semester Mid- I Examinations DESIGN OF PRESTRESSED CONCRETE

K. Prashanthe

	(Structural Engineering)						
	OBJECTIVE Multiple Chair Operation (MCO)						
	Multiple Choice Questions (MCQs) (Answer All, questions, All questions course equal mortes)						
Time:	(Answer ALL questions. All questions carry equal marks) 15 Minutes 10 * 1/2	. = 4	Ma	rks			
1	Loss of stress due to elastic deformation of concrete depends upon						
1.000	(a) Relaxation of Steel (b) Friction and Anchorage Slip	L		1			
	(c) Modular Ratio (d) None						
2	Loss of stress due to friction depends upon	1	D	1			
-	(a) Modulus of Elasticity of Concrete (b) Coefficient of Friction	ļ	V				
	(c) Relaxation of Steel (d) All the above						
3		1	Δ	1			
3	Horizontal or axial prestressing of concrete beams	L	A				
	(a) Reduces the shear strength of the member						
	(b) Has no effect on the shear strength						
	(c) Increases the shear strength (d) All the above	Г	_	1			
4	Ultimate shear strength of prestressed beams failing due to flexure-shear	l	D	1			
	cracks isinfluenced by						
	(a) The width of the section (b) Effective prestress after all loses						
	(c) Tensile strength of concrete (d) Shear strength of concrete.	Г	_	1			
5	The ideal cross-section recommended to resist shear and torsion in bridge	ı	A	1 /			
	girders is						
	(a) Rectangular (b) Tee (c) Hollow box (d) I section	r		1 (
6	Eccentric tendons in a concrete beam section induce	l	A	1			
	(a) Only direct stress (b) Only bending stress						
	(c) Direct and bending stress (d) Only Shear stress	r	A	1 (
7	Uniformly distributed load on a concrete beam can be effectively counter	l	A	1			
	balancedby selecting						
	(a) a Concentric cable (b) an Eccentric cable						
	(c) a Parabolic cable (d) a Trapezoidal cable						
	in the areas section of a prestressed hearn comprises of	ſ	0	1			
8	Resultant stress in the cross-section of a prestressed beam comprises of	I	B	1			
	(a) Prestress + Dead-Load stress + Live-Load stress						
	(b) Prestress + Dead-Load stress						
	(c) Prestress + Live-Load stress			,			
	(d) Dead Load + Live Load	1	С	1			
9	At the end face of a pretensioned beam the tensile stress in steel is	ı		1			
	(a) Maximum (b) Zero (c) Minimum (d) Cannot define	ſ	0	1			
10	At a distance equal to the transmission length from the end face of a	[P	1			
	pretensioned beam, the force in the tendon is						
	(a) Zero						
	(b) 50 per cent of the initial prestressing force						
	(a) Equal to the initial prestressing force						
	(d) 75 per cent of the initial prestressing force						

M.Tech II Year I Semester Regular Examinations, March 2022 DESIGN OF PRESTRESSED CONCRETE (Structural Engineering)

Max Marks: 70 Time: 3 hours

Instructions:

- 1. Question paper comprises of Part-A and Part-B
- 2. Part-A (for 20 marks) must be answered at one place in the answer book.
- 3. Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.

PART - A

(Answer ALL questions. All questions carry equal marks)

10 * 2 = 20 Marks

[2] Explain the principle of prestressing. 1. a. [2] What are the advantages of prestressed concrete? b. [2] What is curvature effect? c. [2] Explain the effect of torsion on prestressed concrete sections. d. State the assumptions made in the analysis of prestressed concrete flexural members [2] e. What are the various methods generally used for the investigation of anchorage zone [2] f. stressed? [2] Explain about concordancy. g. What are cap cables and where are they used? [2] h. What is the influence of differential shrinkage on composite prestressed concrete [2] i. members? List the commonly used method to analyse secondary moments in prestressed concrete [2] j. continuous members.

PART-B

(Answer ALL questions. All questions carry equal marks)

5 * 10 = 50 Marks

A prestressed concrete beam supports a live load of 4kN/m over a simply supported span 2. of 8m. The beam has an I-section with an overall depth of 400mm. The thickness of the flange and web are 60 and 80mm, respectively. The width of the flange is 200mm. They beam is to be prestressed by an effective prestressing force of 235kN at a suitable eccentricity such that the resultant stress at the soffit of the beam at the centre of the span is zero. Find the eccentricity required for the force. If the tendon is concentric, what should be the magnitude of the prestressing force for the resultant stress to be zero at the bottom fiber of the central span section.

GR 20

CODE: GR20D5022

SET-1

3. (a) Explain the limitations of prestressed concrete.

[10]

- (b) A prestress concrete beam spanning over 8m is of rectangular section, 150mm wide and 300mm deep. The beam is prestressed by a parabolic cable having an eccentricity of 75mm below the centroidal axis at centre of span and an eccentricity of 25mm above the centroidal axis at the support sections. The initial force in the cable s 350kN. The beam supports three concentrated loads of 10kN each at intervals of 2m. E_c= 38kN/mm².Neglecting losses of prestress, estimate the short-term deflection due to (prestress+ self weight); and Allowing for 20% loss in prestress, estimate the long-term deflection under (prestress+ self weight+ live load), assuming creep coefficient as 1.80.
- 4. A PSC beam of effective span 15m is of rectangular section 500mm wide and 1000mm deep. A tendons consist of 3600mm² of strands of characteristic strength 1700 N/mm² with an effective prestress of 910 N/mm². The strands are located 870mm from the top face of the beam. If f_{cu} =60 N/mm², estimate the flexural strength of the section as per BS provisions for the following cases: (i) Bonded tendons (ii) Unbonded tendons.

OR

5. (a) Explain the various losses of prestress in post-tensioned members.

[10]

- (b) A prestressed girder of rectangular section 150 mm wide and 300 mm deep, is to be designed to support an ultimate shear force of 130 kN. The uniform prestress across the section is 5 N/mm². Design the suitable spacing for the stirrups as per IS1343-2012. Take Fe415, M40 and an effective cover as 50 mm.
- 6. A high-tensile cable comprising 12 strands of 15 mm diameter (12K15 of PSC Freyssinet system) with an effective force of 2500 kN is anchored concentrically in an end block of a post-tensioned beam. The end block is 400 mm wide by 800 mm deep and the anchor plate is 200 mm wide by 260 mm deep. Design suitable anchorage zone reinforcements using Fe-415 grade HYSD bars using IS:1343 code provisions.

OR

7. Design an I-section for a simply supported post-tensioned concrete beam of span 18 m subjected to an imposed load of 25 kN/m over its entire span. The permissible tensile stress in steel is 1250 N/mm² and the permissible stresses in concrete are: At transfer: 20 N/mm² (Compression) and 2.5 N/mm² (Tensile). At working load: 15 N/mm² (Compression) and 1.5 N/mm² (Tensile).

2 252

8. A prestressing force of 400 kN is to be transmitted through a distribution plate 200 mm × 150 mm, the centre of which is located at 150 mm from the bottom of an end block of section 200 mm × 400 mm. Determine the position and magnitude of maximum tensile stress on a horizontal section passing through the centre of the distribution plate.

OR

- 9. A continuous prestressed concrete beam ABC (AB = BC = 10 m) has a uniform rectangular cross-section with a width of 100 mm and depth of 300 mm. The cable carrying an effective prestressing force of 360 kN is parallel to the axis of the beam and located at 100 mm from the soffit.
 - (i) Determine the secondary and resultant moment at the central support B.
 - (ii) If the beam supports an imposed load of 1.5 kN/m, calculate the resultant stresses at top and bottom of the beam at B. Assume density of concrete as 24 kN/m^3 .
- 10. A simply supported pre-tensioned concrete beam of cross-section 200 mm× 350 mm has an effective span of 8 m, is prestressed by tendons with their centroid is 150 mm from the bottom of the beam. The initial prestressing force in tendons is 400 kN. The beam is incorporated in a composite T-beam by casting a top flange of width 450 mm and thickness 60 mm. If the composite beam is subjected to a live load of 15 kN/m², determine the resultant stresses developed in the precast and cast-in-situ concrete assuming the pre-tensioned beam is propped. Adopt the loss of prestress as 20% and the modulus of elasticity of concrete in precast and cast-in-situ is the same.

OR

11. A two-span continuous concrete beam ABC (AB=BC=12 m) has a rectangular section, 300 mm wide & 800 mm deep. The beam is prestressed by a cable carrying an effective force of 700 kN. The cable has a linear profile in the span AB & parabolic profile in span BC. The eccentricities of the cable are +50 mm at A, -100 mm at a distance of 7 m from A & +200 mm at support B & -200 mm at mid span of BC (- below and + above centroidal axis). Sketch the line of thrust in the beam if it supports a uniformly distributed load of 5 KN/m which includes the self-weight of the beam. Find the resultant stress distribution at the mid- support section.

Gokaraju Rangaraju Institute of Engineering and Technology

(Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090

Summary Sheet CO Attainments

Academic Year:	2021-22			he	M.Tech (S		
Course/Subject:	Design of Prestressed Concrete Structure		Course Code:		GR20D5022		
Department:	Civil Engineering		Year - Sen	nester :	II-I		
Section							

Attainment/CO	CO1	CO2	CO3	CO4	CO5	
Attainment for Direct Internal CO (Mid I & II, Assignments, Tutorials, Assessments, etc.)	2.43	2.43	1.69	1.68	1.96	
Attainment for Direct External CO (End Semester Exam)	0.67	1.42	0.58	0.92	1.42	
Direct CO (0.3*Internal + 0.7*External)	1.20	1.72	0.92	1.15	1.58	
Indirect CO	3.00	3.00	3.00	3.00	3.00	
Final CO (COFn) = (0.9 x Direct CO + 0.1 x Indirect CO)	1.38	1.85	1.12	1.33	1.72	

со		Course Outcome	Remedia	Action for COs Less than 75% (2.25)				
CO1	enhance is	osses in prestressed concrete and its concepts, which include pre oost tensioning processes.	Conduct class tests and allow them for discussion to clarify doubt during class time					
CO2		Design the statically determinate ressed concrete members.	To Show PPT's and Videos for more clarification and better understanding,Lecture notes is provided in Google Classroom					
CO3	Design the en	nd blocks of prestressed concrete members.	To give lot of exercises without the solutions and make discussions after students have attempted					
CO4	1 -	Design the statically indeterminate ressed concrete members.	Solving Old Questio will be done.	n papers in classroom and further clarification				
CO5	_	ne composite structures using essed concrete techniques.	To give unsolved prohave attempted	oblems and having discussions after students				
	ID No.	Name of the Faculty	Department	Signature				
	1177	Mrs K Hemalatha	Civil Engineering					

Gokaraju Rangaraju Institute of Engineering and Technology

(Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090

Direct Internal CO Attainments

																Name	of the			
Academic Year		2021-22							Department		Civil Engineering						Programme		M Tech (STR)	
Year - Semester			II-I						Course	Name :	Design o	of Prestr	essed Co	oncrete Struc	tures		Cours	e Code	GR20D5022	
2-Outcomes	1	2	3	4	5	6														
Find out the losses in prestressed concrete and enhance its concepts, which include pre and post tensioning processes.	Н			M	M	Н														
Analyze and Design the statically determinate prestressed concrete members.	M	M	Н			Н									M, L values o			-		
Design the end blocks of prestressed concrete members.	M	M			Н	Н								CO s automatically PO Attainn Calculated				are ←		
Analyze and Design the statically indeterminate prestressed concrete members.	M	M	Н			Н														
Design the composite structures using prestressed concrete techniques.	М		M		Н	Н														
Convert above mappings to scale 1-3																				
P-Outcomes	1	2	3	4	5	6														
C-Outcomes																				
concrete and enhance its	2			2	2	2														
post tensioning processes. Analyze and Design the statically determinate prestressed	3			2	2	3														
concrete members. Design the end blocks of	2	2	3			3														
prestressed concrete members. Analyze and Design the statically indeterminate prestressed	2	2			3	3														
concrete members. Design the composite structures	2	2	3			3														
using prestressed concrete echniques.	2		2		3	3														
Expected Attainment	2.20	2.00	2.67	2.00	2.67	3.00														
Fill the below table with obtained attainmen	its in mids,	, external a	co1	co2	ce CO3	CO4	COS]												
	Final Cos	CoF	1.38	1.85	1.12	1.33	1.72													
	Attained PO 1	Attained PO 2	Attained PO 3	Attained PO 4	Attained PO 5	Attained PO 6														
CO1	1.38	102	103	0.92	0.92	1.38														
CO2 CO3	1.23 0.75	1.23 0.75	1.85		1.12	1.85														
CO4	0.75	0.75	1.33		1.12	1.12														
CO5	1.15		1.15		1.72	1.72														
Attained	1.08	0.96	1.44	0.92	1.26	1.48														
lote: If Average Attainment of a PO is #Di	v/0! Relac	e the corr	esponding	PO with bl	ank.															
	Α	В	С	D	E	F								Note : PO is Sa	itisfied if attained					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6								PO > 75, U	I indicates PO					
Expected	2.20	2.00	2.67	2.00	2.67	3.00								Uns	atisfied					
Attained	1.08	0.96	1.44	0.92	1.26	1.48														
	U	U	U	U	U	U														