

Gokaraju Rangaraju Institute of Engineering and Technology

Department of Civil Engineering Structural Engineering

Analytical and Numerical Methods for Structural Engineering (GR20D5006)

I M.Tech - I Semester

(2021-2022)

V Naresh Kumar Varma Assistant Professor

Design of Concrete Structures - I

Course File Check List

S.No	Name of the Format	Page No.
1	Syllabus	
2	Time Table	
3	Program Educational Objectives	
4	Program Objectives	
5	Course Objectives	
6	Course Outcomes	
7	Students Roll List	
8	Guide lines to study the course	
9	Course Schedule	
10	Course Plan	
11	Unit Plan	
12	Lesson Plan	
13	Tutorial Sheets	
14	Assignment Sheets	
15	Evaluation Strategy	
16	Assessment in relation to COb's and CO's	
17	Rubric for course	
18	Mappings of CO's and PO's	
19	Model question papers	
20	Mid-I and Mid-II question papers	
21	Mid-I marks	
22	Mid-II marks	
23	Sample answer scripts and Assignments	
24	Course materials like Notes, PPT's, Videos, etc,.	

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SYLLABUS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Unit-I

Fundamentals of Numerical Methods: Error Analysis, Floating-Point Approximation of a Number; Loss of Significance and Error Propagation; Stability in Numerical Computation. **Curve Fitting:** Linear Interpolation - Higher Order Interpolation - Lagrange Interpolation Interpolating polynomials using finites differences- Hermite Interpolation -piece-wise and spline Interpolation.

Unit-II

Elements of Matrix Algebra: Solution of Systems of Linear Equations-Direct method – Cramer's rule, Guass – Elimination Method-Gauss Jordan elimination – Triangulation (LU Decomposition) method – Iterative methods -Jacobi – Iteration method – Gauss – Siedel iteration, Eigen Value Problems- Jacobi method for symmetric matrices- Power method

Unit-III

Solution of Nonlinear Algebraic and Transcendental Equations

Bisection Method; Fixed-Point Iteration Method; Secant Method; Newton Method; Rate of Convergences; Solution of a System of Nonlinear Equations; Unconstrained Optimization.

Unit-IV

Numerical Differentiation & Integration: Solution of Ordinary and Partial Differential Equations - Numerical Integration - Double integration using Trapezoidal and Simpson's method. Euler's method - Backward Euler method - Midpoint method - single step method-Taylor's series method- R-K Methods.

Unit-V

Finite Difference scheme: Implicit & Explicit scheme

Computer Algorithms: Numerical Solutions for Different Structural Problems, Fuzzy Logic and Neural Network.

Text Books:

- 1. An Introduction to Numerical Analysis, Atkinson K.E., J. Wiley and Sons, 1989.
- 2. Theory and Problems of Numerical Analysis, Scheid F, McGraw Hill Book Company, (Shaum Series), 1988.

Reference Books:

- 1. Introductory Methods of Numerical Analysis, Sastry S. S, Prentice Hall of India, 1998.
- 2. Computer Based Numerical Analysis, Dr. M. Shanta Kumar, Khanna Book Publishers, New Delhi.
- 3. Numerical Methods for Scientific and Engineering Computations, M.K. Jain and S.R.K.Iyengar, New Age International Pvt. Ltd., 2005.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

AY: 2021-22.

Department of Civil Engineering

TIME TABLE

COURSE: Analytical and Numerical Methods in Structural Engineering

I YEAR I SEM w.e.f: 15-11-2021

I M.TECH(GR20) – I SEMESTER

Day/Hou r	9.00 – 10.00	10.00 - 11.00	11.00 - 12.00	12.00-01.00	01.00 - 02.00	02.00 - 03.00	03.00 - 04.00
MON							
TUE		ANMSE					
WED	ANMSE			LUNCH			
THU				BREAK	ANMSE	ANMSE	
FRI							
SAT							

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Programme Educational Objectives (PEO's)

- 1. Graduates of the program will equip with professional expertise on the theories, process, methods and techniques for building high- quality structures in a cost-effective manner.
- 2. Graduates of the program will be able to design structural components using contempory softwares and professional tools with quality practices of international standards.
- 3. Graduates of the program will be effective as both an individual contributor and a member of a development team with professional, ethical and social responsibilities.
- 4. Graduates of the program will grow professionally through continuing education, training, research, and adapting to the rapidly changing technological trends globally in structural engineering.

Program Outcomes (PO's)

Graduates of the Civil Engineering programme will be able to

- a. An ability to independently carry out research /investigation and development work to solve practical problems.
- b. An ability to write and present a substantial technical report/document..
- c. Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
- d. Assess the impact of professional engineering solutions in an environmental context along with societal, health, safety, legal, ethical and cultural issues and the need for sustainable development.
- e. Possess critical thinking skills and solve core, complex and multidisciplinary structural engineering problems.
- f. Recognize the need for life-long learning to improve knowledge and competence.

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE OBJECTIVES

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject :ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

On completion of this Subject/Course the student shall be able to:

S.No	Objectives
1	To analyse the performance of various interpolation technique and perform error analysis.
2	To develop the skill of solving linear algebraic systems by direct and iteration methods.
3	To compare various numerical differentiation and integration techniques.
4	To explain the various techniques to study Initial value problems in Ordinary Differential Equations.
5	To solve a range of problems on applicable software.

Signature of HOD	Signature of faculty
Date:	Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the objectives.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE OUTCOMES

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

On completion of this Subject/Course the student shall be able to:

S.No	Outcomes
1	To analyse the performance of various interpolation technique and perform error analysis.
2	Solve linear algebraic system by direct and iteration methods and apply the knowledge of Eigen values and Eigen vectors to some contents in engineering.
3	Apply the knowledge of interpolation and extrapolation of uniform and non-uniform data to certain contents of Civil Engineering.
4	Apply the knowledge of numerical differentiation and integration to some contents of Civil Engineering
5	Solve ordinary and partial differential equations in structural mechanics using numerical methods.

Signature of HOD	Signature of faculty
Date:	Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the objectives.

Gokaraju Rangaraju Institute of Engineering & Technology M.Tech - Structural Engineering Academic Year: 2021- 2022 ROLLLIST

S.No	Reg. No	Name
1	21241D2001	ATKAPURAM PRASHANTH
2	21241D2002	BANDI SRI RAM GOPAL
3	21241D2003	CHALLA MADHAVI
4	21241D2004	PAMMI DIVYA
5	21241D2005	DUMMA UMESH KUMAR
6	21241D2006	K LATHASREE
7	21241D2007	MARIYALA VAISHNAVI
8	21241D2008	MAVOORI PRANAV
9	21241D2009	MITTAPALLI NAGA ASHWINI
10	21241D2010	RAVULA VENKATA SURAJ REDDY
11	21241D2011	REPATI MOHAN BABU
12	21241D2012	CHERUKU SANDHYA
13	21241D2013	SHAIK FEROZ
14	21241D2014	S K SAI CHANDRA
15	21241D2015	THOTA HARSHAVARDHAN
16	21241D2016	VARIKUPPULA LALITHA
17	21241D2017	YAMBA RAMA GNANENDRA SAI
18	21241D2018	YENUMALA DEVESH GOUD
19	21241D2019	S PRASHANTH KUMAR
20	21241D2020	BAVANDLAPELLI THARUN TEJA
21	21241D2021	G NITISH KUMAR

Signature of HOD	Signature of faculty

Date:

Gokaraju Rangaraju Institute of Engineering and Technology

(Autonomous)

Structural Engineering

GUIDELINES TO STUDY THE COURSE/SUBJECT

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Semester: I

Course : ANMSE Course Code: GR20D2006

Name of the faculty: V Naresh Kumar Varma Dept.: Civil Engineering

Designation : Assistant Professor

Guidelines to study the course Computer-Oriented Numerical Methods in Engineering

This course is a study of mathematical techniques used to model engineering systems. It involves the development of mathematical models and the application of the computer to solve engineering problems using the following computational techniques: Taylor Series approximation, numerical differentiation, root-finding using bracketing and open methods, linear and polynomial curve fitting, solution methods for matrix equations, numerical integration, and the solution of differential equations.

Students should have the following prerequisites

- 1. Fundamentals of Matrices
- 2. Basics of Interpolation
- 3. Basics of Differentiation and
- 4. Basics of Integration

Where will this subject help?

- 1. To develop the skill of solving linear algebraic systems by direct and iteration methods.
- 2. To illustrate advanced matrix techniques in the determination of Eigen values and Eigen vectors of square matrix.

- 3. To analyze the performance of various interpolation technique and perform error analysis.
- 4. To compare various numerical differentiation and integration techniques.
- 5. To explain the various techniques to study Initial and Boundary value problems in ODE.
- 6. To solve a range of problems on applicable software.
- 7. To develop the skill of solving linear algebraic systems by direct and iteration methods.

Books/Material

S.No.	Text Books
1	M.K.Jain-S.R.K.Iyengar, R.K.Jain Numerical methods for scientific and
	engineering computations, Willey Eastern Limited, 1987
2	S.S.Sastry, Numerical methods.
3	Curtis I.Gerala, Applied numerical analysis, Addisson Wasley published
	campus.

S.No.	Suggested / Reference Books
1	C.Chopra, Raymond P.Canal, Numerical methods for Engineers Stevan, Mc.
	Graw Hill book Company, 4th edition, 2002.
2	C.Xavier, C Language and Numerical methods, New age international publisher,
	2003.
3	Dr. M.Shanta Kumar, Computer based numerical analysis, Khanna Book
	publishers, New Delhi.

Course Design and Delivery System

- 1. The course syllabus is written into number of learning objectives and learning outcomes.
- 2. These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars and presentations, etc.,
- 3. Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- 4. The learning process will be carried out through assessment of knowledge, skills and attitude by various methods and the student will be given guidance to refer to the textbooks, reference books, journals etc.,

The faculty be able to -

- Understand the principles of learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, lesson and unit plan
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback system to students using various methods of assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone.

Signature of HOD	Signature of Faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

COURSE SCHEDULE

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

The Schedule for the whole Course / Subject is:

		Duratio	Duration (Date)		
S. No.	Description	From	То	of	
				Periods	
1.	UNIT-1 Fundamentals of Numerical Methods Curve Fitting	17/11/21	10/12/21	14	
2.	UNIT-II Elements of Matrix Algebra	14/12/21	31/12/21	13	
3.	UNIT-III Solution of Nonlinear Algebraic and Transcendental Equations	31/12/21	28/01/22	8	
4.	UNIT-IV Numerical Differentiation & Integration	01/02/22	25/02/22	12	
5.	UNIT-V Finite Difference schemes Computer Algorithms	16/11/21	08/12/21	9	

Total No. of Instructional periods available for the course: <u>56</u> Hours / Periods

Signature of H.O.D	Signature of faculty
Date :	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2021-22

Name of the Program : M.Tech Year: I Year Semester: I Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

	_		Engineering (Civil Engil	1	1
S.	Unit	Date	Topics	Objectives &	References(Text book,
No.	No		1	Outcomes Nos.	Journal)
1	Unit I	17-11-2021	Introduction to ANMSE	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
2	Unit I	19-11-2021	Error Analysis	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
3	Unit I	19-11-2021	Floating-Point Approximation of a Number	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
4	Unit I	23-11-2021	Loss of Significance and Error Propagation	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
5	Unit I	24-11-2021	Stability in Numerical Computation	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
6	Unit I	26-11-2021	Introduction to Interpolation	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
7	Unit I	26-11-2021	Linear & Higher Order Interpolation	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
8	Unit I	30-11-2021	Higher order Interpolation	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar

9	Unit I	01-12-2021	Lagrange Interpolation	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
10	Unit I	03-12-2021	Hermite Interpolation	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
11	Unit I	03-12-2021	Piecewise and Spline Interpolation	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
12	Unit I	07-12-2021	Interpolating polynomials using finite differences	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
13	Unit I	08-12-2021	Newtons Divided Difference Interpolation	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
14	Unit I	10-12-2021	Richardson's extrapolation	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
15	Unit I	10-12-2021	Unit-I Problems	Cob1, CO1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
16	Unit II	14-12-2021	Solutions of Linear Equations - Direct Method	Cob2, CO2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
17	Unit II	15-12-2021	Cramer's Rule	Cob2, CO2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
18	Unit II	17-12-2021	Gauss - Elimination Method	Cob2, CO2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
19	Unit II	17-12-2021	Gauss - Jordan Elimination	Cob2, CO2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
20	Unit II	21-12-2021	LU Decomposition Method	Cob2, CO2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar

21	Unit II	22-12-2021	Iterative Methods - Jacobi Iteration method	Cob2, CO2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
22	Unit II	24-12-2021	Gauss - Siedel Iteration	Cob2, CO2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
23	Unit II	24-12-2021	Introduction to Eigen Values & Eigen Vectors	Cob2, CO2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
24	Unit II	28-12-2021	Jacobi method for symmetric matrices	Cob2, CO2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
25	Unit II	29-12-2021	Power Method, Inverse Power Method	Cob2, CO2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
26	Unit II	31-12-2021	Nearest Eigen Value by Power Method	Cob2, CO2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
27	Unit III	31-12-2021	Solution of Nonlinear Algebraic and Transcendental Equations	Cob3, CO3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
28	Unit III	04-01-2022	Bisection Method	Cob3, CO3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
29	Unit III	05-01-2022	Fixed-Point Iteration Method	Cob3, CO3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
30	Unit III	07-01-2022	Secant Method	Cob3, CO3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
31	Unit III	07-01-2022	Newton Method	Cob3, CO3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
32	Unit III	25-01-2022	Regula Falsi Methods	Cob3, CO3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar

33	Unit III	28-01-2022	Rate of Convergences	Cob3, CO3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
34	Unit III	28-01-2022	Unconstrained Optimization	Cob3, CO3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
35	Unit IV	01-02-2022	Numerical Solution of Ordinary differential equations	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
36	Unit IV	02-02-2022	Numerical Integration	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
37	Unit IV	04-02-2022	Double integration using Trapezoidal method.	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
38	Unit IV	04-02-2022	Double integration using Simpson's method.	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
39	Unit IV	08-02-2022	Integration Methods Problem Solving	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
40	Unit IV	09-02-2022	Numerical Solution of Partial differential equations	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
41	Unit IV	11-02-2022	Euler's method – Backward Euler method	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
42	Unit IV	11-02-2022	Midpoint method – single step method	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
43	Unit IV	15-02-2022	Euler's Method Problem Solving	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
44	Unit IV	16-02-2022	Taylor's series method	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar

45	Unit IV	18-02-2022	Taylor's series method	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
46	Unit IV	18-02-2022	R-K Methods	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
47	Unit IV	22-02-2022	R-K Methods	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
48	Unit IV	23-02-2022	Boundary value problems by finite difference method	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
49	Unit IV	25-02-2022	Boundary value problems	Cob4, CO4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
50	Unit V	25-02-2022	Finite Difference schemes	Cob5, CO5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
51	Unit V	02-03-2022	Implicit scheme	Cob5, CO5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
52	Unit V	04-03-2022	Explicit scheme	Cob5, CO5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
53	Unit V	04-03-2022	Computer Algorithms	Cob5, CO5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
54	Unit V	08-03-2022	Numerical Solutions for Different Structural Problems	Cob5, CO5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
55	Unit V	09-03-2022	Fuzzy Logic Neural Network.	Cob5, CO5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar
56	Unit V	11-03-2022	Neural Network	Cob5, CO5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Topics/Sub Topics	Date	No. of	Objectives	References	Blooms
		Periods	& Outcomes	(Text book, Journal)	Taxono
			No.		my level
		1	COb-1&	Numerical methods for	K1
Introduction to	17-11-2021		CO-1	scientific & Engg.	
ANMSE	17-11-2021			computations by M. K.	
				Jain & S.R.K Iyengar	
		1	COb-1&	Numerical methods for	K1
			CO-1	scientific & Engg.	
Error Analysis	19-11-2021			computations by M. K.	
				Jain & S.R.K Iyengar	
		1	COb-1&	Numerical methods for	K1
Floating-Point		1	CO-1	scientific & Engg.	
Approximation of a	19-11-2021			computations by M. K.	
Number				Jain & S.R.K Iyengar	
		1	COb-1&	Numerical methods for	K2
Loss of Significance and Error	23-11-2021		CO-1	scientific & Engg.	
Propagation	23-11-2021			computations by M. K.	
- Topagation				Jain & S.R.K Iyengar	
		1	COb-1&	Numerical methods for	K2
Stability in Numerical			CO-1	scientific & Engg.	
Computation	24-11-2021			computations by M. K. Jain & S.R.K Iyengar	
				Julii & B.R.IX Tyengai	
		1	COb-1&	Numerical methods for	K2
Introduction to			CO-1	scientific & Engg.	
Introduction to	26-11-2021			computations by M. K.	
interpolation				Jain & S.R.K Iyengar	

Linear & Higher Order Interpolation	26-11-2021	1	COb-1& CO-1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Higher order Interpolation	30-11-2021	1	COb-1& CO-1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Lagrange Interpolation	01-12-2021	1	COb-1& CO-1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Hermite Interpolation	03-12-2021	1	COb-1& CO-1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Piecewise and Spline Interpolation	03-12-2021	1	COb-1& CO-1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Interpolating polynomials using finite differences	07-12-2021	1	COb-1& CO-1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Newtons Divided Difference Interpolation	08-12-2021		COb-1& CO-1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Richardson's extrapolation	10-12-2021		COb-1& CO-1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Unit-I Problems	10-12-2021		COb-1& CO-1	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Topics/Sub Topics	Date	No. of	Objectives	References	Blooms
		Periods	& Outcomes	(Text book, Journal)	Taxono
			No.		my level
Solutions of Linear Equations - Direct Method	14-12-2021	1	COb-2 & CO-2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Cramer's Rule	15-12-2021	1	COb-2 & CO-2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Gauss - Elimination Method	17-12-2021	1	COb-2 & CO-2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Gauss - Jordan Elimination	17-12-2021	1	COb-2 & CO-2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2

LU Decomposition Method	21-12-2021	1	COb-2 & CO-2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Iterative Methods - Jacobi Iteration method	22-12-2021	1	COb-2 & CO-2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Gauss - Siedel Iteration	24-12-2021	1	COb-2 & CO-2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Introduction to Eigen Values & Eigen Vectors	24-12-2021	1	COb-2 & CO-2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Jacobi method for symmetric matrices	28-12-2021	1	COb-2 & CO-2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K3
Power Method, Inverse Power Method	29-12-2021	1	COb-2 & CO-2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K3
Nearest Eigen Value by Power Method	31-12-2021	1	COb-2 & CO-2	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K3

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Topics/Sub Topics	Date	No. of	Objectives	References	Blooms
		Periods	& Outcomes	(Text book, Journal)	Taxono
			No.		my level
Solution of Nonlinear Algebraic and Transcendental Equations	31-12-2021	1	COb-3 & CO-3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Bisection Method	04-01-2022	1	COb-3 & CO-3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Fixed-Point Iteration Method	05-01-2022	1	COb-3 & CO-3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Secant Method	07-01-2022	1	COb-3 & CO-3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2

Newton Method	07-01-2022	1	COb-3 & CO-3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Regula Falsi Methods	25-01-2022	1	COb-3 & CO-3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Rate of Convergences	28-01-2022	1	COb-3 & CO-3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K3
Unconstrained Optimization	28-01-2022	1	COb-3 & CO-3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K4
Numerical Solution of Ordinary differential equations	01-02-2022	1	COb-3 & CO-3	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K3

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Topics/Sub Topics	Date	No. of	Objectives &	References	Blooms
		Periods	Outcomes	(Text book, Journal)	Taxonom
			No.		y level
Numerical Integration	02-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Double integration using Trapezoidal method.	04-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Double integration using Simpson's method.	04-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Integration Methods Problem Solving	08-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Numerical Solution of Partial differential equations	09-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2

Euler's method – Backward Euler method	11-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Midpoint method – single step method	11-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Euler's Method Problem Solving	15-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Taylor's series method	16-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Taylor's series method	18-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K3
R-K Methods	18-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
R-K Methods	22-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Boundary value problems by finite difference method	23-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K4
Boundary value problems	25-02-2022	1	COb-4 & CO-4	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K4

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Topics/Sub Topics	Date	No. of	Objectives	References	Blooms
		Periods	& Outcomes	(Text book, Journal)	Taxono
			No.		my level
Finite Difference schemes	25-02-2022	1	COb-5 & CO-5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K3
Implicit scheme	02-03-2022	1	COb-5 & CO-5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K3
Explicit scheme	04-03-2022	1	COb-5 & CO-5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Computer Algorithms	04-03-2022	1	COb-5 & CO-5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2

Numerical Solutions for Different Structural Problems	08-03-2022	1	COb-5 & CO-5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Fuzzy Logic Neural Network.	09-03-2022	1	COb-5 & CO-5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Neural Network	11-03-2022	1	COb-5 & CO-5	Numerical methods for scientific & Engg. computations by M. K. Jain & S.R.K Iyengar	K2

Signature of HOD	Signature of faculty
Date:	Date:

LESSON PLAN

Academic Year : 2021-22 **Date:** 17-11-2021

Name of the Program : M.Tech. Year : I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:1 Duration of Lesson: 1 hr

Lesson Title: Introduction to ANMSE

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand introduction, basic, prerequisites, mathematics of ANMSE

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Introduction, Basic, Prerequisites, Mathematics

Assignment / Questions:

LESSON PLAN

Academic Year : 2021-22 **Date:** 19-11-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:2 Duration of Lesson: 1 hr

Lesson Title: Error Analysis

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand error analysis, decimal point

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

Error Analysis, decimal point

Assignment / Questions:

1.Represent 625.12546 in normalized floating-point representation COb1, CO1

LESSON PLAN

Academic Year : 2021-22 **Date:** 19-11-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:3 Duration of Lesson: 1 hr

Lesson Title: Floating-Point Approximation of a Number

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand floating-point approximation of a number, roundoff & cutoff

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Floating-Point Approximation of a Number, roundoff & Cutoff

Assignment / Questions:

1. Write about floating point form of anumber COb1, CO1

LESSON PLAN

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:4 Duration of Lesson: 1 hr

Lesson Title: Loss of Significance and Error Propagation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand loss of significance and error propagation

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Loss of Significance and Error Propagation

Assignment / Questions:

1. Explain about Error Prapagation COb1, CO1

LESSON PLAN

Academic Year : 2021-22 **Date:** 24-11-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:5 Duration of Lesson: <u>1 hr</u>

Lesson Title: Stability in Numerical Computation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand stability in numerical computation, max error

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Stability in Numerical Computation, Max Error

Assignment / Questions:

1. Write about stability of a number COb1, CO1

LESSON PLAN

Academic Year : 2021-22 **Date:** 26-11-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:6 **Duration of Lesson:** <u>1 hr</u>

Lesson Title: Introduction to Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand introduction to interpolation, joining a curve

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Introduction to Interpolation, Joining a curve

Assignment / Questions:

1. Problems on interpolation COb1, CO1

LESSON PLAN

Academic Year : 2021-22 **Date:** 26-11-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:7 **Duration of Lesson:** 1 hr

Lesson Title: Linear & Higher Order Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve linear & higher order interpolation and errors

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Linear & Higher Order Interpolation and errors

Assignment / Questions:

1. Problems on higher order interpolation COb1, CO1

LESSON PLAN

Academic Year : 2021-22 **Date:** 30-11-2021

Name of the Program : M.Tech. Year : I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:8 Duration of Lesson: 1 hr

Lesson Title: Higher order Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve higher order interpolation and errors

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Higher order Interpolation and errors

Assignment / Questions:

1. Problems on interpolation COb1, CO1

LESSON PLAN

Academic Year : 2021-22 **Date:** 01-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:9 Duration of Lesson: <u>1 hr</u>

Lesson Title: Lagrange Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve lagrange interpolation and errors

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Lagrange Interpolation and errors

Assignment / Questions:

1. Problems on lagrange interpolation COb1, CO1

LESSON PLAN

Academic Year : 2021-22 **Date**: 03-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:10 **Duration of Lesson:** <u>1 hr</u>

Lesson Title: Hermite Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve hermite interpolation and errors

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Hermite Interpolation and errors

Assignment / Questions:

1. Problems on hermite interpolation COb1, CO1

LESSON PLAN

Academic Year : 2021-22 **Date**: 03-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:11 Duration of Lesson: 1 hr

Lesson Title: Piecewise and Spline Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve piecewise and spline interpolation and errors

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

Piecewise and Spline Interpolation and errors

Assignment / Questions:

1. Problems on spline interpolation COb1, CO1

LESSON PLAN

Academic Year : 2021-22 **Date:** 07-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:12 Duration of Lesson: 1 hr

Lesson Title: Interpolating polynomials using finite differences

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve interpolating polynomials using finite differences and errors

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

Interpolating polynomials using finite differences and errors

Assignment / Questions:

1. Problems using finite differences COb1, CO1

LESSON PLAN

Academic Year : 2021-22 **Date:** 08-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:13 Duration of Lesson: 1 hr

Lesson Title: Newtons Divided Difference Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve newtons divided difference interpolation and errors

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Newtons Divided Difference Interpolation and errors

Assignment / Questions:

1. Problems on finite difference interpolation COb1, CO1

LESSON PLAN

Academic Year : 2021-22 **Date:** 10-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:14 Duration of Lesson: 1 hr

Lesson Title: Richardson's extrapolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve richardson's extrapolation and errors

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Richardson's extrapolation and errors

Assignment / Questions:

1. Write about richardson's extrapolation COb1, CO1

LESSON PLAN

Academic Year	: 2021-22	Date: 10-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:15 Duration of Lesson: 1 hr

Lesson Title: Unit-I Problems

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve all interpolation methods

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

All interpolation methods and Doubts clearing

Assignment / Questions:

LESSON PLAN

Academic Year : 2021-22 **Date:** 14-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:16 Duration of Lesson: 1 hr

Lesson Title: Solutions of Linear Equations - Direct Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to find solutions of linear equations using direct method

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Solutions of Linear Equations - Direct Method

Assignment / Questions:

1. Problems on linear equations - direct method COb2, CO2

LESSON PLAN

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:17 Duration of Lesson: 1 hr

Lesson Title: Cramer's Rule

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve cramer's rule, no of unknowns, determinants

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Cramer's Rule, No of Unknowns, determinants

Assignment / Questions:

1. Problems on cramer's rule COb2, CO2

LESSON PLAN

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:18 Duration of Lesson: 1 hr

Lesson Title: Gauss - Elimination Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve gauss - elimination method, LDU--> U

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Gauss - Elimination Method, LDU--> U

Assignment / Questions:

1. Problems on elimination method COb2, CO2

LESSON PLAN

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:19 **Duration of Lesson:** 1 hr

Lesson Title: Gauss - Jordan Elimination

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve gauss - jordan elimination, LDU--> D

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Gauss - Jordan Elimination, LDU--> D

Assignment / Questions:

1. Problems on jordan elimination COb2, CO2

LESSON PLAN

cademic Year	: 2021-22	Date: 21-12-202
cademic Year	: 2021-22	Date: 21-12-2

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:20 **Duration of Lesson:** <u>1 hr</u>

Lesson Title: LU Decomposition Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve LU decomposition method

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

LU Decomposition Method

Assignment / Questions:

1. Problems on lu decomposition method COb2, CO2

Signature of faculty

LESSON PLAN

Academic Year : 2021-22 **Date:** 22-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:21 Duration of Lesson: 1 hr

Lesson Title: Iterative Methods - Jacobi Iteration method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve iterative methods - jacobi iteration method, iterations

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Iterative Methods - Jacobi Iteration method, iterations

Assignment / Questions:

1. Problems on jacobi iteration method COb2, CO2

LESSON PLAN

Academic Year : 2021-22 **Date:** 24-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:22 Duration of Lesson: 1 hr

Lesson Title: Gauss - Siedel Iteration

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve gauss - siedel iteration, iterations

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Gauss - Siedel Iteration, iterations

Assignment / Questions:

1. Problems on gauss - siedel iteration COb2, CO2

LESSON PLAN

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:23 Duration of Lesson: 1 hr

Lesson Title: Introduction to Eigen Values & Eigen Vectors

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand introduction to eigen values & eigen vectors and its applications

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Introduction to Eigen Values & Eigen Vectors and its applications

Assignment / Questions:

1. Problems on eigen values & eigen vectors COb2, CO2

LESSON PLAN

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:24 Duration of Lesson: 1 hr

Lesson Title: Jacobi method for symmetric matrices

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve jacobi method for symmetric matrices, matrix properties

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Jacobi method for symmetric matrices, Matrix Properties

Assignment / Questions:

1. Problems using symmetric matrices COb2, CO2

LESSON PLAN

Academic Year : 2021-22 **Date:** 29-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:25 Duration of Lesson: 1 hr

Lesson Title: Power Method, Inverse Power Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve power method, inverse power method and understand its uses

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

Power Method, Inverse Power Method Uses

Assignment / Questions:

1. Problems on inverse power method COb2, CO2

LESSON PLAN

Academic Year : 2021-22 **Date:** 31-12-2021

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:26 Duration of Lesson: 1 hr

Lesson Title: Nearest Eigen Value by Power Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve nearest eigen value by power method

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Nearest Eigen Value by Power Method

Assignment / Questions:

1. Problems on value by power method COb2, CO2

LESSON PLAN

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:27 Duration of Lesson: 1 hr

Lesson Title: Solution of Nonlinear Algebraic and Transcendental Equations

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to find solution of nonlinear algebraic and transcendental equations

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Solution of Nonlinear Algebraic and Transcendental Equations

Assignment / Questions:

1. Problems on nonlinear algebraic and transcendental equations COb3, CO3

LESSON PLAN

Academic Year : 2021-22 **Date:** 04-01-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:28 Duration of Lesson: 1 hr

Lesson Title: Bisection Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve bisection method and convergence

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Bisection Method and Convergence

Assignment / Questions:

1. Problems on bisection method COb3, CO3

LESSON PLAN

Academic Year : 2021-22 **Date:** 05-01-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:29 **Duration of Lesson:** 1 hr

Lesson Title: Fixed-Point Iteration Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve fixed-point iteration method and convergence

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Fixed-Point Iteration Method and Convergence

Assignment / Questions:

1. Problems on method COb3, CO3

LESSON PLAN

Academic Year : 2021-22 **Date:** 07-01-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:30 **Duration of Lesson:** <u>1 hr</u>

Lesson Title: Secant Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve secant method and convergence

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Secant Method and Convergence

Assignment / Questions:

1. Problems on secant method COb3, CO3

LESSON PLAN

Academic Year : 2021-22 **Date:** 07-01-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:31 Duration of Lesson: 1 hr

Lesson Title: Newton Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve newton method and convergence

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Newton Method and Convergence

Assignment / Questions:

1. Problems on newton method COb3, CO3

LESSON PLAN

Academic Year : 2021-22 **Date:** 25-01-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:32 Duration of Lesson: 1 hr

Lesson Title: Regula Falsi Methods

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve regula falsi methods and convergence

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Regula Falsi Methods and Convergence

Assignment / Questions:

1. Problems on Regula Falsi methods COb3, CO3

LESSON PLAN

Academic Year : 2021-22 **Date:** 28-01-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:33 Duration of Lesson: 1 hr

Lesson Title: Rate of Convergences

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve rate of convergences and identifying best method

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Rate of Convergences and identifying best method

Assignment / Questions:

1. Problems on convergences COb3, CO3

LESSON PLAN

Academic Year	: 2021-22	Date: 28-01-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:34 Duration of Lesson: 1 hr

Lesson Title: Unconstrained Optimization

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve unconstrained optimization

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Unconstrained Optimization

Assignment / Questions:

1. Problems on unconstrained optimization COb3, CO3

Signature of faculty

LESSON PLAN

Academic Year : 2021-22 **Date:** 01-02-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:35 Duration of Lesson: 1 hr

Lesson Title: Numerical Solution of Ordinary differential equations

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve numerical solution of ordinary differential equations

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Numerical Solution of Ordinary differential equations

Assignment / Questions:

1. Problems on ordinary differential equations COb3, CO4

LESSON PLAN

Academic Year : 2021-22 **Date:** 02-02-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:36 Duration of Lesson: 1 hr

Lesson Title: Numerical Integration

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve numerical integration, area under the curve

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Numerical Integration, Area under the Curve

Assignment / Questions:

1. Problems on integration COb3, CO4

LESSON PLAN

Academic Year : 2021-22 **Date:** 04-02-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:37 Duration of Lesson: 1 hr

Lesson Title: Double integration using Trapezoidal method.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve double integration using trapezoidal method, approximations

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Double integration using Trapezoidal method, approximations

Assignment / Questions:

1. integral Problems using trapezoidal method. COb3, CO4

LESSON PLAN

Academic Year : 2021-22 **Date:** 04-02-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:38 **Duration of Lesson:** <u>1 hr</u>

Lesson Title: Double integration using Simpson's method.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve double integration using simpson's method, errors

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Double integration using Simpson's method, errors

Assignment / Questions:

1. integral Problems simpson's method. COb3, CO4

LESSON PLAN

Academic Year : 2021-22 **Date:** 08-02-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:39 Duration of Lesson: 1 hr

Lesson Title: Integration Methods Problem Solving

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve integration methods and their accuracy

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

Integration Methods and their accuracy

Assignment / Questions:

COb3, CO4

LESSON PLAN

Academic Year : 2021-22 **Date:** 09-02-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:40 Duration of Lesson: 1 hr

Lesson Title: Numerical Solution of Partial differential equations

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve numerical solution of partial differential equations

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Numerical Solution of Partial differential equations

Assignment / Questions:

1. Problems on of partial differential equations COb3, CO4

LESSON PLAN

Academic Year : 2021-22 **Date:** 11-02-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:41 Duration of Lesson: 1 hr

Lesson Title: Euler's method – Backward Euler method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve euler's method – backward euler method

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Euler's method - Backward Euler method

Assignment / Questions:

1. Problems on backward euler method COb3, CO4

LESSON PLAN

Academic Year : 2021-22 **Date:** 11-02-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:42 Duration of Lesson: 1 hr

Lesson Title: Midpoint method – single step method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve midpoint method – single step method

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Midpoint method – single step method

Assignment / Questions:

1. Problems on single step method COb3, CO4

LESSON PLAN

Academic Year	: 2021-22	Date: 15-02-2022

Name of the Program : M.Tech. Year : I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:43 Duration of Lesson: 1 hr

Lesson Title: Euler's Method Problem Solving

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve euler's method and its accuracy

TEACHING AIDS : White Board, Marker, Scientific Calculator
TEACHING POINTS :

Euler's Method and its accuracy

Assignment / Questions:

COb3, CO4

LESSON PLAN

Academic Year	: 2021-22		Date: 16-02-2022
Name of the Program	n: M.Tech.	Year : I	Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:44 Duration of Lesson: 1 hr

Lesson Title: Taylor's series method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve taylor's series method

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS :

Taylor's series method

Assignment / Questions:

1. Problems on taylor's series method COb3, CO4

LESSON PLAN

Academic Year : 2021-22 **Date:** 18-02-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:45 Duration of Lesson: 1 hr

Lesson Title: Taylor's series method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve taylor's series method problems

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

Taylor's series method problems

Assignment / Questions:

1. Problems on taylor's series method COb3, CO4

LESSON PLAN

Academic Year : 2021-22 **Date:** 18-02-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:46 Duration of Lesson: 1 hr

Lesson Title: R-K Methods

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve R-K methods ist order and 2nd order

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

R-K Methods Ist order and 2nd Order

Assignment / Questions:

1. Problems on R-K methods COb3, CO4

LESSON PLAN

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:47 Duration of Lesson: 1 hr

Lesson Title: R-K Methods

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve R-K methods 3rd order and 4th order

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

R-K Methods 3rd Order and 4th Order

Assignment / Questions:

1. Problems on R-K methods COb3, CO4

LESSON PLAN

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:48 Duration of Lesson: 1 hr

Lesson Title: Boundary value problems by finite difference method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to solve boundary value problems by finite difference method

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Boundary value problems by finite difference method

Assignment / Questions:

1. Problems on Problems by finite difference method COb4, CO4

LESSON PLAN

Academic Year : 20	021-22		Date: 25-02-2022
Name of the Program : M	.Tech.	Year : I	Semester: I
Course/Subject: ANMSE		Cou	rse Code: GR20D2006
Name of the Faculty: Mr.	V Naresh Kumar	Varma	
Department: Structural En	gineering (CIVII	L)	
Designation: Assistant Pro	ofessor		
Lesson No:49	Duration o	f Lesson: 1 h	<u>r</u>
Lesson Title: Boundary val	lue problems		
-	n the student sha : White Board, M	ll be able to so	olve boundary value problems fic Calculator
Problem Solving	5		

Assignment / Questions:

1. boundary value Problems COb4, CO4

LESSON PLAN

Academic Year : 2021-22 **Date:** 25-02-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:50 **Duration of Lesson:** <u>1 hr</u>

Lesson Title: Finite Difference schemes

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand finite difference schemes methods

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

Finite Difference schemes methods

Assignment / Questions:

1. Problems on finite difference schemes COb4, CO4

LESSON PLAN

Academic Y	Year :	: 2021-22		Date: 02-03-2022	
Name of the	e Program :	M.Tech.	Year : I	Semester: I	
Course/Subject: ANMSE			Cour	se Code: GR20D2006	
Name of the	e Faculty: N	Ar. V Naresh Kumar	· Varma		
Departmen	t: Structural	Engineering (CIVII	Ĺ)		
Designation	: Assistant	Professor			
Lesson No:	51	Duration o	f Lesson: 1 hr	•	
Lesson Titl	e: Implicit so	cheme			
	-				
INSTRUCT	ΓΙΟΝΑL/LΙ	<u>ESSON OBJECTIV</u>	<u>/ES:</u>		
On complete	ion of this le	sson the student sha	ll be able to un	nderstand implicit scheme, uses	
TEACHIN	G AIDS	: White Board, M	larker, Scientif	fic Calculator	
TEACHIN	G POINTS	:			
I	mplicit sche	me, uses			

Assignment / Questions:

1. Problems on implicit scheme COb4, CO4

LESSON PLAN

Academic Year	: 2021-22	Date: 04-03-2022

Name of the Program : M.Tech. Year : I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:52 Duration of Lesson: 1 hr

Lesson Title: Explicit scheme

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand explicit scheme, uses

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

Explicit scheme, uses

Assignment / Questions:

1. Problems on explicit scheme COb4, CO4

LESSON PLAN

Academic Year : 2021-22 **Date:** 04-03-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:53 Duration of Lesson: 1 hr

Lesson Title: Computer Algorithms

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand computer algorithms, writing basic mathematical programs

TEACHING AIDS: White Board, Marker, Scientific Calculator

TEACHING POINTS:

Computer Algorithms, writing basic mathematical programs

Assignment / Questions:

1. write an algorithm to find the highest number of three COb5, CO5

LESSON PLAN

Academic Year : 2021-22 **Date:** 08-03-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:54 Duration of Lesson: 1 hr

Lesson Title: Numerical Solutions for Different Structural Problems

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand numerical solutions for different structural problems

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

Numerical Solutions for Different Structural Problems

Assignment / Questions:

1. Explain about numerical solutions for different structural Problems COb5, CO5

LESSON PLAN

Academic Year : 2021-22 **Date:** 09-03-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:55 **Duration of Lesson:** <u>1 hr</u>

Lesson Title: Fuzzy Logic Neural Network.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand fuzzy logic and its applications

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

Fuzzy Logic and its Applications

Assignment / Questions:

1. Write about fuzzy logic and its applications COb5, CO5

LESSON PLAN

Academic Year : 2021-22 **Date:** 11-03-2022

Name of the Program: M.Tech. Year: I Semester: I

Course/Subject: ANMSE Course Code: GR20D2006

Name of the Faculty: Mr. V Naresh Kumar Varma

Department: Structural Engineering (CIVIL)

Designation: Assistant Professor

Lesson No:56 Duration of Lesson: 1 hr

Lesson Title: Neural Network

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to understand neural network and its applications

TEACHING AIDS : White Board, Marker, Scientific Calculator

TEACHING POINTS:

Neural Network and its Applications

Assignment / Questions:

1. Write about neural networks and its applications COb5, CO5

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Assignment – 1 Questions

1. Calculate the maximum absolute error by performing four iterations of the Gauss-Seidel method for solving the system of given equations by comparing it with the exact solution.

CO2, BL3

$$4x + 2z = 6$$

$$5y + 2z = -3$$

$$5x+4y+10z=11$$

2) Solve the system of equations by Gauss Elimination Method. CO2, BL3

$$x+y+z=6$$

$$3x+3y+4z=20$$

$$2x+y+3z=13$$

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Assignment – 2 Questions

1) Estimate the population for the year 1995 from the following data using Newton's forward difference interpolation and Newton's backward difference interpolation.

CO1, BL4

Year	1921	1931	1941	1951	1961
Population(in	46	66	81	98	101
thousands)					

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Assignment – 3 Questions

2) Derive the formulas for the first derivative of y = f(x) of $O(h^2)$ using forward difference approximations and backward difference approximations. Using these estimate $f'(\frac{\pi}{4})$, with $h = \frac{\pi}{12}$, when $f(x) = \sin x$. Obtain the bounds in truncation error and compare with exact solution.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Assignment – 4 Questions

1. Explain the procedure to evaluate any given function using Simpson's ($\frac{1}{3}$)rd rule and also evaluate $\int_0^1 \frac{1}{1+X} dx$ using Simpson's 3/8 rule.

2. Give $du/dt=t^2+u^2$, and u(0)=1, obtain Taylor Series for u(t) obtained from first two non-zero terms and hence Compute u(1).

CO4, BL3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Assignment – 5 Questions

1. Solve the initial value problem u'= -2tu² with u(0)=1 and h=0.2 on the interval [0, 0.4]. Use fourth order classical Runge Kutta method. Compare with exact solution.

CO4, BL4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Tutorial – 1 Questions

1. Determine the largest Eigen value in modulus and corresponding Eigen vectors of matrix

$$A = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$$
 CO2, BL3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Tutorial – 2 Questions

1. Using Lagrange's method, find the polynomial f(x) and hence find f(2).

X	1	3	4
У	-3	0	30

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Tutorial – 3 Questions

1. Give $du/dt=t^2+u^2$, and u(0)=1, obtain Taylor Series for u(t) obtained from first two non-zero terms and hence Compute u(1). **CO4, BL4**

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Tutorial – 4 Questions

1. Find the Jacobian matrix for the system of equations CO3, BL3

$$F_1(x, y) = x^2 + y^2 - x = 0$$

$$F_2(x, y) = x^2 - y^2 - x = 0$$

2. Evaluate $\int_0^{\pi/2} \cos(x) dx$ by using trapezoidal rule taking 6 intervals.

CO4, BL3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Tutorial – 5 Questions

1. Solve the initial value problem $u' = -2tu^2$ with u(0)=1 and h=0.2 on the

interval [0, 0.4] using Backward Euler Method CO4, BL3

EVALUATION STRATEGY

Academic Year	:	202	1-22

Name of the Program: M.Tech Year: I Year Semester: II

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

1. TARGET:

a) Percentage for pass: 100%b) Percentage of class: 100%

First class with distinction	21
First class	21
Pass class	-
Total strength	21

2. COURSE PLAN & CONTENT DELIVERY

• 60 to 75 practice classes held for detailed demonstration of Syllabus and for analyzing real time problems in the class.

3. METHOD OF EVALUATION

3.1 Continuous Assessment Examinations (CAE-I, CAE-II)
3.2 ☐ Assignments
3.3 □ Projects
3.4 □ Quiz
3.5 ☐ Semester/End Examination
3.6 □ Others

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

MAPPING

GR20D2006 / ANMSE		Course Outcomes					
Course Objectives	1	1 2 3 4 5					
1	X						
2		X					
3			X				
4				X			
5					X		

GR20D2006 / ANMSE	Course Outcomes				
Assessments	1	2	3	4	5
1	X				
2		X			
3			X		
4				X	
5					X

GR20D2006 / ANMSE	Course Objectives					
Assessments	1	2	3	4	5	
1	X					
2		X				
3			X			
4				X		
5					X	

GR20D2006 / ANMSE							
COs/POs	a	b	c	d	e	f	
1.	М	М	М	-	М	-	
2.	М	-	М	-	М	-	
3.	М	М	М	-	Н	М	
4.	М	-	М	-	Н	М	
5.	М	М	М	М	М	Н	

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

RUBRICS FOR COURSE

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: II

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

		Beginning	Developing	Reflecting Development	Accomplished	Exemplary	Score
Name of the	Performance	1	2	3	4	5	
Student	Criteria						
21241A02007	Level of knowledge on illustrating the fundamental concepts of matrices and its properties	Low Level	Able to understand	Able to understand and explain	Full Knowledge	Analyzing and application of knowledge	5
	Level of knowledge on interpolation, differentiation and integration	Low Level	Able to understand	Able to understand and explain	Full Knowledge	Analyzing and application of knowledge	4
	Level of knowledge on initial value problems and boundary value problems	Low Level	Able to understand	Able to understand and explain	Full Knowledge	Analyzing and application of knowledge	3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE COMPLETION STATUS

Academic Year : 2021-22

Name of the Program: M.Tech Year: I Year Semester: II

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Actual Date of Completion & Remarks, if any

Units	Remarks	Objectives Achieved	Outcomes Achieved
Unit I	10-12-2021 Unit covered on time	1	1
Unit II	31-12-2021 Unit covered on time	2	2
Unit III	04-02-2022 Unit delayed by one week	3	3
Unit IV	25-02-2022 Unit covered on time	4	4
Unit V	11-03-2022 Unit covered on time	5	5

Signature of HOD	Signature of faculty
DIGHAGAIC OF FICE	Signature of factory

Date: Date:

Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous)

Department of Civil Engineering (Structural Engineering) ANALYTICAL AND NUMERICAL METHODS FOR STRUCTURAL ENGINEERING [GR20D5006]

	[GR20D500	06]
	Mid-I.	Time: 15 minutes
Year &	z Sem: I M.Tech. I Sem.	Date: 08-02-2022
Five M	PART – A Iultiple Choice Questions. Each Question carries 1	
1	Paragont (25 12546 in a consolidad floating point of	oursesstation CO1 DL2
1.	Represent 625.12546 in normalized floating-point re	
	A. $(-1)^0$ x 62.512546 x 10^1 B. $(-1)^0$ x 6.2512546 x 10^2	C. $(-1)^0$ x 0.62512546 x 10^3 D. $(-1)^0$ x 625.12546 x 10^0
2	The exponent e is limited to a range $m < e < M$ then	
2.	exponent e s minted to a range in session there exponent e s m, this can be termed as	CO1 DIA
	A. Memory Underflow	CO1, BL2 [] C. NaN
	B. Memory Overflow	D. None of the mentioned
3	Error is equal to	CO2, BL1
J.	A. Distance between the data points	C. Half the distance between the data
	B. Square of the distance between the	points
	data points	D. None of the mentioned
4	Which of the following method uses determinants to	
7.	number of equations as variables?	CO2, BL1
	A. Gauss Elimination Method	C. Triangulation Method
	B. Gauss Jordan Elimination	D. Cramer's rule
5	A transcendental equation may have	
3.	A. One root	C. Infinite number of roots
	B. No root	D. A or B or C
6	Gauss Siedel iteration method is also known as method	
U.	A. Successive	C. Simultaneous
	B. Consecutive	D. None of the mentioned
7	In the Gauss Elimination method for solving a system	
/•	leads to matrix.	
	A. Diagonal P. Lower Triangular	C. Upper Triangular
8.	B. Lower Triangular	D. Identity elation to the size of the true value. CO3 , BL1 []
0.	A. True	
	B. Relative	C. PercentageD. Absolute
9.	The determinant of matrix contains either a row of z	
9.	A. One	C. Two
	B. Three	D. Zero
10.	The line is tangent to the parabola and intersects the	
10.	has how many solution/s?	CO1, BL2
	A. One	t J
	B. Three	
	C. Two	

D. Zero

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous)

Department of Civil Engineering (Structural Engineering) ANALYTICAL AND NUMERICAL METHODS FOR STRUCTURAL ENGINEERING [GR20D5006]

Exam: Mid-I. Time: 75 minutes

Year & Sem: I M.Tech. I Sem. Date: 08-02-2022

PART – B

Internal Choice Three Questions. Each Question carries 5 marks

 $3 \times 5 = 15 \text{ marks}$

1. (a) Explain about Floating Point Approximation and Error propagation. **CO1, BL2**

(b) Define (i) Absolute Error, (ii) Relative Error and (iii) Percentage Error. CO1, BL1

OR

2. (a) Using Lagrange's method, find the polynomial f(x) and hence find f(5).

CO1, BL3

X	1	3	4	6
f	-3	0	30	132

(b) Find f(x) and compute f(0.3) for the data

CO1, BL3

х	0	1	3	4
f	1	3	49	129

using Newton's divided difference formula.

3. Solve the following system by Gauss Seidel Iteration Method. Perform 4 iterations. CO2, BL4

$$10x - 5y - 2z = 3$$

$$4x - 10y + 3z = -3$$

$$x + 6y + 10z = -3$$

4. Solve the following system by Gauss Elimination method.

CO2, BL4

$$83x + 11y - 4z = 95$$

$$7x + 52y + 13z = 104$$

$$3x + 3Y + 29z = 71$$

5. Determine the approximate root of the equation

CO3, BL5

$$2x^6 - 5x^4 + 2 = 0$$

in the interval [0, 1] after performing six iterations in the Bisection method.

 \mathbf{OR}

6. Determine the roots of the following equation using Fixed point Iteration method after performing six

iterations CO3, BL5

$$x^2 - 2x - 5 = 0$$

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous)

Department of Civil Engineering (Structural Engineering) ANALYTICAL AND NUMERICAL METHODS FOR STRUCTURAL ENGINEERING [GR20D5006]

		[GR20D5006]			
Exam: Mid-II.				Time: 15 m	inutes
Year & Sem: I M.Tec	ch. I Sem.	D. D		Date: 15-03	-2022
Five Multiple Choice	e Questions. Each Q	PART – A uestion carries ½ m	ark	$10 \times \frac{1}{2} = 5$	marks
 An example o tan x = x = log 		n is CO3, BL2	C. $x^3 - 5x + 3 = 0$ D. None	I]
Which of the tA. RegulaB. Bisect		s linear rate of conve	rgence? CO3, BL2 C. Newton-Raphson D. None	1]
3. The two initia A. (-1, 0) B. (1, 2)	l values to find roots o	of the equation $x^3 - 1$	x - 3 = 0 in bisection me C. (-2, 1) D. (1, 0)	thod are[]
4. If $y = -\cos x$ A. $\sin x$ B. $-\sin x$	·		CO4, BL4 C cos x D. cos x	[]
5. if $f(x) = x^{\pi}$, $A. \frac{22}{7}$			CO4, BL4 $C. \frac{22}{7} x^{15/7}$	I]
 B. 7/22 6. Evaluate the in A. 21/2 	ategral of $dx / (x + 2)$) from -6 to -10.	D. 7/22 x ^{15/7} CO4, BL5 C. ln 3	I]
B. 1/2 7. Evaluate the in	ontegral of $sin^5 x dx$ if	the lower limit is 0 ar	D. $ln~2$ and the upper limit is $\pi/2$? C	O4.BL5 [1
A. 0.233 B. 0.533	nogiai eram wam ii		C. 0.333 D. 0.433	0.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
8. When an algor A. Flowch B. Program	art		g language, it becomes a Co C. Pseudo code D. Syntax	O5,BL2 []
9. Algorithms canA. pseudoB. flowcha		CO5,BL2	C. programsD. all the above	[]
10. Pseudocode is A. To writ	used for e program steps	CO5,BL2	C. Denoting progran	[n flow]

D. None of the above

B. For coding the program

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Autonomous)

Department of Civil Engineering (Structural Engineering) ANALYTICAL AND NUMERICAL METHODS FOR STRUCTURAL ENGINEERING [GR20D5006]

Exam: Mid-II.

Time: 75 minutes

Year & Sem: I M.Tech. I Sem.

Date: 15-03-2022

PART – B

Internal Choice Three Questions. Each Question carries 5 marks $3 \times 5 = 15$ marks

1) Determine the root of the equation $cosx-xe^x=0$ by the method of Newton Raphson's method with initial assumption of $x_0=1$. Perform at least 6 iterations. **CO3**, **BL4**

OR

- 2) Determine real root of the equation $f(x) = x^3 2x 5 = 0$ by method of False position. Perform at least 6 iterations. CO3, BL4
- 3) (a) Evaluate the double integral using the Simpson's rule with four subintervals

$$\int_{1}^{5} \left(\int_{1}^{5} \frac{dx}{(x^{2} + y^{2})^{1/2}} \right) dy$$

CO4, BL5

(b) Given the following values of $f(x) = x^4$. Determine f'(0.8) & f''(0.8) using quadratic interpolation.

CO₄, BL₄

x	Y 1 1.7		0.8	
f(x)	0.0256	0.1296	0.4096	

OR

4) Solve the initial value problem $u^{l} = -2tu^{2}$ with u(0) = 1 and h = 0.2 on the

interval [0, 0.4]. Use fourth order classical Runge Kutta method. Compare with exact solution. **CO4, BL5**

5) Use the Finite Difference method to approximate the solution of the boundary value problem

CO5, BL4

$$y''(x) - 2y(x) = 0$$
, $y(0) = 1.2$, $y(1.0) = 0.9$, $h = 0.25$

6) Define Algorithm, Fuzzy Logic and Neural Networks. List out the applications of Fuzzy Logic and Neural Networks in Civil Engineering.

CO5, BL1

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ANMSE INTERNAL MARKS

Roll No	Mid-I	Mid-II	Avg	Assesment	Attendance	Total
21241D2001	18	13	16	4	4	24
21241D2002	17	18	18	5	4	27
21241D2003	17	16	17	5	5	27
21241D2004	13	17	15	5	4	24
21241D2005	16	18	17	5	5	27
21241D2006	17	18	18	5	5	28
21241D2007	16	18	17	5	5	27
21241D2008	14	12	13	5	4	22
21241D2009	16	19	18	5	5	28
21241D2010	14	15	15	5	4	24
21241D2011	14	18	16	5	5	26
21241D2012	14	14	14	5	4	23
21241D2013	9	10	10	5	5	20
21241D2014	17	17	17	5	5	27
21241D2015	16	13	15	5	5	25
21241D2016	15	19	17	5	5	27
21241D2017	9	11	10	5	5	20
21241D2018	16	14	15	5	4	24
21241D2019	AB	AB	AB	3	4	7
21241D2020	7	10	9	3	4	16
21241D2021	13	11	12	5	4	21