Matrix Methods in Structural Analysis (GR20D5001)

I-M.Tech (Structural engineering) – I Semester (2021-22)

Dr. G.V.V. Satyanarayana

Professor

Department of Civil Engineering Gokaraju Rangaraju Institute of Engineering and Technology,

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Gokaraju Rangaraju Institute of Engineering andTechnology Department of Civil Engineering

MATRIX METHODS OF STRUCTURAL ANALYSIS(GR20D5001) COURSE FILE CHECK LIST

S.No.	Name of the Format	Page
1.	Syllabus	
2.	Time Table	
3.	Program educational Objectives	
4.	Program objectives	
5.	Course Objectives	
6.	Course Outcomes	
7.	Students Roll List	
8.	Guide lines to study the course books & references, course design & delivery	
9.	Course schedule	
10.	Unit plan/Course Plan	
11.	Evaluation Strategy	
12.	Assessment in relation to COB's and Co's	
13.	Tutorial Sheets	
14.	Assignment Sheets	
15.	Rubric for Course	
16.	Mappings of CO's and Po's	
17.	Model question papers	
18.	Mid-I and Mid-II question papers	
19.	Mid –I marks	
20.	Mid –II marks	
21.	Sample answer scripts and Assignments	
22.	Course materials like notes, PPT's, Videos etc.,	

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

GR 20 Regulations

M.Tech I Year I semester

MATRIX METHODS IN STRUCTURAL ANALYSIS (GR20D5001)

UNIT - I

Introduction to matrix methods of analysis - Static indeterminacy and kinematic indeterminacy - degree of freedom - coordinate system - structure idealization stiffness and flexibility matrices - suitability element stiffness equations - elements flexibility equations - mixed force - displacement equations - for truss element, beam element and tensional element. Transformation of coordinates - element stiffness matrix - and load vector - local and global coordinates

UNIT - II

Stiffness Matrix Assembly of Structures and its Applications to Simple Problems: Direct Stiffness method, Matrix in Global Coordinates, Boundary Conditions, Solution of Stiffness Matrix Equations.

UNIT - III

Analysis of Beams, Plane Trusses, Plane Rigid Jointed frames using flexibility method

UNIT - IV

Analysis of plane truss - continuous beam - plane frame and grids by stiffness matrix methods.

UNIT - V

Special analysis procedures - Static condensation and sub structuring - initial and thermal stresses. Shear walls- Necessity - structural behaviour of large frames with and without shear walls - approximate methods of analysis of shear walls.

TEXT BOOKS:

1 . William Weaver J.R and James M.Geve, Matrix Analysis of Frames structures, CBS publications, Delhi 2004.

- 2. Ashok.K.Jain, Advanced Structural Analysis, New Channel Brothers, 1996.
- 3. C.S.Reddy, Structural Analysis, 3rd edition, 2010.

REFERENCES:

- 1. Kanchi, Matrix Structural Analysis, 1995.
- 2. J.Meek, Matrix Methods of Structural Analysis, 3rd edition, 1980.
- 3. Ghali and Neyveli, Structural Analysis, 3rd edition, December, 1990.

Name of the college & Code: Gokaraju Rangaraju Institute of Engineering & Technology, 24Name of the PG Program
Room No: 4203: Master of TechnologySpecialization: Structural Engineering

Academic Year & Semester : 2021-22, I Semester

Time Table

w.e.f:15-11-2021

DAY/TIME	9:00AM- 10:00AM	10.00 AM- 11.00 AM	11.00 AM- 12.00 PM	12.00 PM- 1:00 PM	1.00 PM 2.00 PM	2.00 PM - 3.00 PM	3.00 PM- 4.00 PM
MON							
TUE					MMSA		
WED		MMSA					
THU							
FRI	MN	1SA					
SAT							

S.No.	Subject Code	Name of the Subject	Name of the Teacher
1	GR18D5164	Matrix Methods in Structural Analysis(MMSA) (Professional Core I)	Dr. G V V Satyanarayana
2	GR18D5165	Advanced Solid Mechanics (Professional Core II)	
3	GR18D5166	Advanced Concrete Technology (Professional Elective-I)	Dr. K.Sriknath
4	GR18D5169	Analytical and Numerical Methods for Structural Engineering (Program Elective II)	Mr.V.Naresh Kumar Varma
5	GR18D5012	Research Methodology and IPR (Core)	Dr.Mohammed Hussain
6	GR18D5207	English for Research Paper Writing (Audit Course 1)	
7	GR18D5172	Structural Design Lab	Dr.Atulkumar Manchalwa
8	GR18D5173	Concrete Technology Lab	Dr.V.S.reddy?Y.Kamal; Raju

M.Tech Coordinator

HOD

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Finite Element Methods in Structural Engineering

Course Code:GR20D5001

Program Educational Objective's

PEO 1:

Graduates of the program will equip with professional expertise on the theories, process, methods and techniques for building high-quality structures in a cost-effective manner.

PEO 2:

Graduates of the program will be able to design structural components using contempory software and professional tools with quality practices of international standards.

PEO 3:

Graduates of the program will be effective as both an individual contributor and a member of a development team with professional, ethical and social responsibilities.

PEO 4:

Graduates of the program will grow professionally through continuing education, training, research, and adapting to the rapidly changing technological trends globally in structural engineering.

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Finite Element Methods in Structural Engineering Course Code:GR20D5001

Program Outcomes(PO's):

PO 1: An ability to independently carry out research /investigation and development to solve practical problems.

PO 2: An ability to write and present a substantial technical report/document.

PO 3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelors.

PO 4: Possess critical thinking skills and solve core, complex and multidisciplinary structural engineering problems.

PO 5: Assess the impact of professional engineering solutions in an environmental context along with societal, health, safety, legal, ethical and cultural issues and the need for sustainable development.

PO 6: Recognize the need for life-long learning to improve knowledge and competence.

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

COURSE OBJECTIVES

Academic Year : 2021-22

Semester: I

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural AnalysisCourse Code: GR20D5001

Name of the Faculty: Dr.<u>GVVSatyanarayana</u> Dept.:<u>Civil Engineering</u>

Designation: PROFESSOR

On completion of this Subject/Course the student shall be able to:

S.No	Objectives
1	To learn how to idealize statically and kinematically determinate and indeterminate Structures and their ill effects.
2.	To learn the difference between local and global co-ordinates systems and its role in preparation of stiffness matrix.
3	To understand the effective usage of flexibility matrix method in statically indeterminate structures.
4	To understand the effective usage of stiffness matrix method in kinematically indeterminate structures.
5	To understand about static condensation and sub structuring. To learn about shear walls and their role in multi storied structures.

Signature of HOD

Signature of faculty

Date:

Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the objectives.

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

COURSE OUTCOMES

Academic Year

: 2021-22

Semester: I

Name of the Program: M.Tech(Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural AnalysisCourse Code: GR20D5001

Name of the Faculty: Dr.GVVSatyanarayanaDept.:Civil Engineering

Designation: PROFESSOR.

The expected outcomes of the Course/Subject are:

S.No	Outcomes
1	Evaluate the static and kinematic indeterminacy and generate stiffness and flexibility matrices.
2	Analyse the skeleton structures using stiffness method under different coordinate system.
3	Use flexibility matrix method to analyse different structures.
4	Use stiffness matrix method to analyse different structures.
5	Analyse various types of structural members using special analysis procedures and shear walls in multi storied constructions

Signature of HOD

Signature of faculty

Date:

Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the outcomes.

CCCCCC.	Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440						
	M.Tech (Structural Engineering) I Year I Semester						
	Academic Year 2021-22						
S.No	Student Name	Roll No					
1	ATKAPURAM PRASHANTH	21241D2001					
2	BANDI SRI RAM GOPAL	21241D2002					
3	CHALLA MADHAVI	21241D2003					
4	PAMMI DIVYA	21241D2004					
5	DUMMA UMESH KUMAR	21241D2005					
6	K LATHASREE	21241D2006					
7	MARIYALA VAISHNAVI	21241D2007					
8	MAVOORI PRANAV	21241D2008					
9	MITTAPALLI NAGA ASHWINI	21241D2009					
10	RAVULA VENKATA SURAJ REDDY	21241D2010					
11	REPATI MOHAN BABU	21241D2011					
12	CHERUKU SANDHYA	21241D2012					
13	SHAIK FEROZ	21241D2013					
14	S K SAI CHANDRA	21241D2014					
15	THOTA HARSHAVARDHAN	21241D2015					
16	VARIKUPPULA LALITHA	21241D2016					
17	YAMBA RAMA GNANENDRA SAI	21241D2017					
18	YENUMALA DEVESH GOUD	21241D2018					
19	S PRASHANTH KUMAR	21241D2019					
20	BAVANDLAPELLI THARUNTEJA	21241D2020					
21	G NITISH KUMAR	21241D2021					
L		•					

GokarajuRangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

GUIDELINES TO STUDY THE COURSE/SUBJECT

Academic Year : 2021-22	
Semester : I	
Name of the Program: M.Tech(Structural Engineering) I	Year:
Course/Subject: Matrix Methods in Structural Analysis GR20D5001	Course Code:
Name of the Faculty: Dr.GVVSatyanarayana	Dept.: Civil Engineering

Designation: PROFESSOR Guidelines to study the Course/ Subject: Structural Analysis

Course Design and Delivery System (CDD):

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and • Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to –

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively •
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Signature of HOD

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

COURSE SCHEDULE

Academic Year : 202122

Semester : I

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject:Matrix Methods in Structural analysis **GR20D5001**

Name of the Faculty: Dr.GVVSatyanarayana

Designation: PROFESSOR

The Schedule for the whole Course / Subject is:

		Duratio	n (Date)	Total No.
S. No.	Description	From	То	Of
				Periods
1.	Unit – I Introduction to Matrix methods of	16-11-21	07-12-21	13
	Analysis			
2.	Unit- II Assembly of stiffness matrices	08-12-21	24-12-21	10
3.	Unit-III Introduction about Flexibility matrix	24-12-21	25-01-22	12
	method(Force Method) And application to			
	indeterminate beams			
4.	Unit-IV Introduction about stiffness matrix	28-01-22	11-02-22	10
	method(Displacement Method) And application			
	to indeterminate beams			
5.	Unit-V Special analysis proceduresIntroduction	15-02-22	01-03-22	09
	about special analysis procedures, static			
	condensation and sub structuring in structures			

Total No. of Instructional periods available for the course: 54Hours / Periods

Course Code:

Dept.: Civil Engineering

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS COURSEPLAN

Academic Year : 2021-22

Semester : I

Name of the Program : M.Tech

Year: I

UNIT NO.: I TO V

Course Code: GR20D5001

Dept.: Civil Engineering

Course/Subject: Matrix Methods in Structural Analysis

Name of the Faculty: Dr.GVV Satyanarayana

Designation: PROFESSOR

UNIT - I

Unit No.	Lesson No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.:to
1.	1.	16-11- 2021	1	Unit – I Introduction to Matrix methods of Analysis - Introductionabout Matrix Methods in Structural analysis	1&1	Structural Analysis by S.S.Bhavikati , Advanced Structural Analysis by Asohk.K.Jainn and Structural analysis by C.S.Reddy
	2.	17-11- 2021	1	Determination of Static indeterminacy of structures	1 & 1	
	3.	19-11- 2021	1	Determination of Kinematic indeterminacy of structures	1 & 1	
	4.	19-11- 2021	1	Determination of DOF of given structures	1 & 1	
	5.	23-11- 2021	1	Explain the co-ordinate system	1&1	
	6.	24-11- 2021	1	Structure idealization	1 & 1	
	7.	26-11- 2021	1	Differentiate & relation between Stiffness & Flexibility Matrix methods	1 & 1	
		26-11-	1	Explain general	1&1	

8.	2021		equations for Flexibility & stiffness matrix methods	
	13-11-		Derivation of	1 & 1
9	2021	1	displacement equations	
			for truss element	
	01-12-		Derivation of	1&1
10	2021	1	displacement equations	
			for beam elements	
	03-12-		Derivation of	1&1
11	2021		displacement equations	
			of tensional elements	
12	03-12-		Discuss on element	1&1
12	2021		stiffness matrix	
13	07-12-		Discuss on local and	1&1
15	2021		Global coordinates	

UNIT - II

Unit No.	Lesso n No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	References (Text Book, Journal)
2.	1.	08-12- 2021	1	Unit- IIStiffness Matrix Assembly of Structures and its	2 & 2	Structural Analysis by S.S.Bhavikati , Advanced Structural Analysis by Asohk.K.Jainn and Structural analysis by C.S.Reddy
	2.	10-12- 2021	1	Local matrix and global matrix for load and displacement vectors (Stiffness matrix in global coordinates)	2 & 2	
	3.	10-12- 2021	1	stiffness matrix approach and Applications to Simple Problems method	2 & 2	
	4.	14-12- 2021	1	Evaluation of stiffness matrix using Direct Stiffness method	2 & 2	
	5.	15-12- 2021	1	General procedure of assembly of stiffness matrices	2 & 2	
	6.	17-12- 2021	1	Discuss on boundary conditions	2 & 2	
	7.	17-12- 2021	1	Solutions of stiffness matrix equations	2 & 2	
	8.	21-12- 2021	1	Solutions of stiffness matrix equations	2 & 2	
	9.	22-12- 2021	1	Assembling global stiffness matrices	2 & 2	

	10.	24-12- 2021	1	Spring problems	2 & 2	
--	-----	----------------	---	-----------------	-------	--

UNIT - III

Unit No.	Lesson No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	References (Text Book, Journal)
3.	1.	24-12- 2021	1	Unit-III Introduction about Flexibility matrix method(Force Method) And application to indeterminate beams	3 & 3	Structural Analysis by S.S.Bhavikati , Advanced Structural Analysis by Asohk.K.Jainn and Structural analysis by C.S.Reddy
	2.	28-12- 2021	1	Flexibility matrix approach to statically indeterminate beams	3&3	
	3.	29-12- 2021	1	Methodology to calculate redundant forces at beam joints using flexibility matrix method	3 & 3	
	4.	31-12- 2021	1	Methodology to calculate redundant forces at beam joints using flexibility matrix method	3&3	
	5.	31-12- 2021	1	Analyze continuous beams by using flexibility matrix methods carrying with different loads	3&3	
	6.	04-01- 2022	1	Analyze continuous beams by using flexibility matrix methods carrying with different loads and sinking supports	3&3	
	7.	54-01- 2022	1	Analyze plane truss by using flexibility matrix methods carrying with different loads	3&3	
	8.	07-01- 2022	1	Analyze plane truss by using flexibility matrix methods carrying with different loads	3 & 3	
	9.	07-01- 2022	1	Analyze plane frame by using flexibility matrix methods carrying with different loads	3&3	
	10.	11-01- 2022	1	Analyze plane frame by using flexibility matrix methods carrying with different loads	3 & 3	

11.	12-01- 2022	1	Solving old question papers in unit -3	3 & 3	
12.	25-01- 2022	1	Solving old question papers in unit -3	3 & 3	

UNIT - IV

Unit No.	Lesson No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	References (Text Book, Journal)
4.	1.	28-01- 2022	1	Unit-IV Introduction about Flexibility matrix method(Displacement Method) And application to indeterminate beams	4 & 4	Structural Analysis by S.S.Bhavikati , Advanced Structural Analysis by Asohk.K.Jainn and Structural analysis by C.S.Reddy
	2.	28-01- 2022	1	Stiffness matrix approach to kinematically indeterminate beams	4 & 4	
	3.	01-02- 2022	1	Methodology to calculate redundant forces at beam joints using stiffness matrix method	4 & 4	
	4.	02-02- 2022	1	Methodology to calculate redundant forces at beam joints using stiffness matrix method	4 & 4	
	5.	04-02- 2022	1	Analyze continuous beams by using stiffness matrix methods carrying with different loads	4 & 4	
	6.	04-02- 2022	1	Analyze continuous beams by using stiffness matrix methods carrying with different loads and sinking supports	4 & 4	
	7.	08-02- 2022	1	Analyze plane truss by using stiffness matrix methods carrying with different loads	4 & 4	
	8.	09-02- 2022	1	Analyze plane truss by using stiffness matrix methods carrying with different loads	4 & 4	
	9.	11-02- 2022	1	Analyze plane frame by using stiffness matrix methods carrying with different loads	4 & 4	
	10.	11-02- 2022	1	Analyze plane frame by using stiffness matrix	4 & 4	

	methods carrying with	
	different loads	

UNIT - V

Unit No.	Lesson No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	References (Text Book, Journal)
5.	1.	15-02- 2022	1	Unit-V Introduction about Special analysis procedures	5 & 5	Structural Analysis by S.S.Bhavikati , Advanced Structural Analysis by Asohk.K.Jainn and Structural analysis by C.S.Reddy
	2.	16-02- 2022	1	Importance about special analysis procedures	5 & 5	
	3.	18-02- 2022	1	Explain static condensation with suitable example	5&5	
	4.	18-02- 2022	1	What is sub-structuring? And its importance in structural analysis	5&5	
	5.	22-02- 2022	1	What is effect due to initial and thermal stress in structures?	5 & 5	
	6	23-02- 2022	1	Introduction and Necessity of shear walls	5 & 5	
	7	25-02- 2022	1	Importance of shear walls in structures and their location in structures	5 & 5	
	8	25-02- 2022	1	Structural behaviour of large frames with and without shear wall	5 & 5	
	9	01-03- 2022	1	Approximate methods of analysis of shear walls	5 & 5	

Signature of HOD

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 16-11-2021			
Semester	: I Unit – I Introduction to Matrix m	ethods of Analysis			
Name of the Program	: M.Tech (Structural Engineering)	Year: I			
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001			
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering			
Designation: PROFES	SSOR				
Lesson No: 1		Duration of Lesson: <u>1hr</u>			
Lesson Title: Introduc	ction about Matrix methods of analysis				
INSTRUCTIONAL/L	ESSON OBJECTIVES:				
On completion of this	On completion of this lesson the student shall be able to:				
1. Definition of structure and its importance.					
2. Analyze the different parameters induced in the structure during loading.					
3. Analyze different structures with different end conditions.					

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

- Definition of a structure
- Differentiate between link and mechanism
- Different types of structures

Assignment / Questions: (1 & 1) 1. What is a structure? (1 & 1) 2. Explain link and hinge where they are used.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 17-11-2021		
Semester	: I Unit – I Introduction to Matrix me	ethods of Analysis		
Name of the Program	: M.Tech (Structural Engineering)	Year: I		
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001		
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering		
Designation: PROFE	SSOR			
Lesson No: 2		Duration of Lesson: <u>1hr</u>		
Lesson Title: Determi	nation of Static indeterminacy of structures			
INSTRUCTIONAL/I	ESSON OBJECTIVES:			
On completion of this	lesson the student shall be able to:			
1. Definition of static	indeterminacy.			
2. Basic formulas for various structures come under static indeterminate.				
3. Tips in determination of static indeterminacy.				
TEACHING AIDS	: white board, Different color markers			

TEACHING POINTS :

- Definition of static indeterminacy.
- Differentiate between link and hinge in a structure.
- Formula for static indeterminacy for external and internal indeterminacy of various structures.

Assignment / Questions: (1 & 1) 1. What is redundant?

(1 & 1) 2. Explain in determination of static indeterminacy of a structure. Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 19-11-2021		
Semester	: I Unit – I Introduction to Matrix m	ethods of Analysis		
Name of the Program	: M.Tech (Structural Engineering)	Year: I		
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001		
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering		
Designation: PROFE	SSOR			
Lesson No: 3		Duration of Lesson: <u>1hr</u>		
Lesson Title: Determ	ination of Kinematic indeterminacy of structu	ires		
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				
1. Determination	of Kinematic indeterminacy of structures.			

- 2. Degrees of freedom at various supports.
- 3. Difference between DOF's and redundants.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Definition of kinematic indeterminacy.
- Differentiate between static and kinematic indeterminacy.
- Evaluation of kinematic indeterminacy with different methods.

Assignment / Questions: (1& 1) 1. Explain the procedure in evaluation of kinematic indeterminacy?

(1 & 1) 2.Explain the difference between static and kinematic

indeterminate structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 19-11-2021		
Semester	: I Unit – I Introduction to Matrix n	nethods of Analysis		
Name of the Program	: M.Tech (Structural Engineering)	Year: I		
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001		
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering		
Designation: PROFE	SSOR			
Lesson No: 4		Duration of Lesson: <u>1hr</u>		
Lesson Title: Determ	ination of DOF of given structures			
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				
1 Determine the DO	F at different annoute			

1. Determine the DOF at different supports.

•

2. Analyze different structures with different end conditions

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Definition of a cantilever method in determination of KID.
- Differentiate between vertical and horizontal shear release at supports.

Assignment / Questions: (1& 1) 1. What is angular and linear translation at pin and rigid joints? (1& 1) 2. Explain the cantilever method or tree method to evaluate the

KID of structure..

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 23-11-2021			
Semester	: I Unit – I Introduction to Matrix m	ethods of Analysis			
Name of the Program	: M.Tech (Structural Engineering)	Year: I			
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001			
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering			
Designation: PROFES	SSOR				
Lesson No: 5		Duration of Lesson: <u>1hr</u>			
Lesson Title: Structur	re idealization				
INSTRUCTIONAL/L	ESSON OBJECTIVES:				
On completion of this	lesson the student shall be able to:				
1. How to idealize the	1. How to idealize the structure under different co-ordinate systems?				
2. How to change the local co-ordinates into global co-ordinate system.					
3. Importance of transformation matrix.					

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

- Definition of transformation matrix.
- How to change local co-ordinates in to global co-ordinates?

Assignment / Questions: (1& 1) 1. What is use of transformation matrix?

(1& 2) 2. Explain the differences between local and global co-ordinate system.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 24-11-2021
Semester	: I Unit – I Introduction to Matrix m	nethods of Analysis
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFE	SSOR	
Lesson No: 6		Duration of Lesson: <u>1hr</u>
Lesson Title: Differen	ntiate & relation between Stiffness & Flexibi	lity Matrix methods
INSTRUCTIONAL/I	LESSON OBJECTIVES:	
On completion of this	s lesson the student shall be able to:	
	out the structure idealization. cructure idealization in Structural Analysis.	
TEACHING AIDS	: white board, Different colour markers 5 :	
• Explain the	procedure of structure idealization.	

Assignment / Questions: (1& 1) 1. Explain about the structure idealization.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 26-11-2021		
Semester	: I Unit – I Introduction to Matrix m	nethods of Analysis		
Name of the Program	: M.Tech (Structural Engineering)	Year: I		
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001		
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering		
Designation: PROFE	SSOR			
Lesson No: 7		Duration of Lesson: <u>1hr</u>		
Lesson Title: Differentiate and relation betweenFlexibility & stiffness matrix methods				
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				

1. Derive the general relationship between Flexibility & stiffness matrix methods

2. Explain the differences between Flexibility & stiffness matrix methods

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- How to evaluate the general relationship between Flexibility & stiffness matrix methods
- Explain the differences between Flexibility & stiffness matrix methods

Assignment / Questions: (1& 1) 1. Derive the relationship between Flexibility & stiffness matrix Methods.

(1 & 1) 2. List out the differences between Flexibility & stiffness matrix Methods.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 26-11-2021	
Semester	: I Unit – I Introduction to Matrix methods of Analysis		
Name of the Program	a : M.Tech (Structural Engineering)	Year: I	
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 8		Duration of Lesson: <u>1hr</u>	
Lesson Title: Explain general equations for Flexibility & stiffness matrix methods			
INSTRUCTIONAL/LESSON OBJECTIVES:			
	1 .1 . 1 . 1 11 1 1 .		

On completion of this lesson the student shall be able to:

1. Derive the general equation for flexibility method.

- 2. Derive the general equation for stiffness method.
- 3. Explain the characteristics of stiffness / flexibility matrices

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Explain the procedure in calculation of forces in the pin jointed truss or beam using force method.
- Explain the procedure in calculation of forces in the pin jointed truss or beam using displacement method

Assignment / Questions: (1 & 1) 1. Derive the forces in the pin jointed truss or beam using force method.

(1 & 1) 2. Derive the forces in the pin jointed truss or beam using displacement method.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 13-11-2021	
Semester	: I Unit – I Introduction to Matrix methods of Analysis		
Name of the Program	: M.Tech (Structural Engineering)	Year: I	
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 9		Duration of Lesson: <u>1hr</u>	
Lesson Title: Derive	displacement equations for truss element.		

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Calculation of displacement equations for truss element.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Evaluate the displacement equations for truss element.

Assignment / Questions: (1& 1) 1. How to calculate the displacement equations for truss element.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 01-12-2021	
Semester	: I Unit – I Introduction to Matrix m	ethods of Analysis	
Name of the Program	: M.Tech (Structural Engineering)	Year: I	
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 10		Duration of Lesson: <u>1hr</u>	
Lesson Title: Derivation of displacement equations for beam element			
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			
1.Calculation of displacement equations for beam element			
TEACHING AIDS	: white board, Different colour markers		

TEACHING POINTS :

• How to calculate the displacement equations for beam element

Assignment / Questions: (1,2& 2) 1. Evaluate the displacement equations for beam element

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 03-12-2021	
Semester	: I Unit – I Introduction to Matrix methods of Analysis		
Name of the Program	: M.Tech (Structural Engineering)	Year: I	
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 11		Duration of Lesson: <u>1hr</u>	
Lesson Title: Derivation of displacement equations for tensional element.			
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			
1. Evaluation of displacement equations for tensional element.			

1 1

TEACHING AIDS : white board, Different colour markers

:

TEACHING POINTS

- Explain the procedure to evaluate displacement equations for tensional element.
- 1. Assignment / Questions: (1 & 1) 1. Explain the procedure in determination of displacement equations for tensional element.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 03-12-2021	
Semester	: I Unit – I Introduction to Matrix methods of Analysis		
Name of the Program	: M.Tech (Structural Engineering)	Year: I	
Comme (Seale is at			
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 12		Duration of Lesson: <u>1hr</u>	
Lesson Title: Discuss on element stiffness matrix			
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			

1.Explain about element stiffness matrix

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

Evaluation of element stiffness matrix using direct method.Check the properties of stiffness matrix after evaluation.

Assignment / Questions: (1 & 1) 1. What is element stiffness matrix? (1& 1) 2. Determine stiffness matrices for different assigned coordinates.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 07-12-2021	
Semester	: I Unit – I Introduction to Matrix m	nethods of Analysis	
Name of the Program	: M.Tech (Structural Engineering)	Year: I	
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 13		Duration of Lesson: <u>1hr</u>	
Lesson Title: Discuss on local and Global co-ordinates			
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			
1. Understand about the local and Global co-ordinates			

2. Differences between local and natural co-ordinate systems.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain about Global and natural co-ordinate system and their differences

Assignment / Questions: (1 & 1) 1. Explain different co-ordinate systems with suitable examples.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 08-12-2021	
Semester	: I Unit – II Assembly of stiffness matrices		
Name of the Program	: M.Tech (Structural Engineering)	Year: I	
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 14		Duration of Lesson: <u>1hr</u>	
Lesson Title: Assembly of stiffness matrices.			
INSTRUCTIONAL/LESSON OBJECTIVES:			

On completion of this lesson the student shall be able to:

1. Calculation of size of stiffness matrix.

2. Evaluate the global stiffness matrix from individual stiffness matrices.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Assembling of global stiffness matrix from individual stiffness matrices.
- Evaluate the size of global stiffness matix.

:

Assignment / Questions: (2& 2) 1. Evaluate the global stiffness matrices from individual stiffness matrices

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 10-12-2021	
Semester	: I Unit – II Assembly of stiffness matrices		
Name of the Program	: M.Tech (Structural Engineering)	Year: I	
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFE	SSOR		
Lesson No: 15		Duration of Lesson: <u>1hr</u>	

Lesson Title: Local matrix and global matrix for load and displacement vectors

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Calculation of global displacement vector.

2. Explain the procedure for calculation of global load vector from elemental load vectors.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS

- Evaluate the elemental load and displacement vectors.
- Explain the procedure in preparation of Global load and displacement vectors from individual load and displacement vectors.

Assignment / Questions: (2 & 2) 1. Evaluate the Global load and displacement vectors with help of

individual load and displacement vectors.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 10-12-2021	
Semester	: I Unit – II Assembly of stiffness ma	atrices	
Name of the Program	: M.Tech (Structural Engineering)	Year: I	
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFE	SSOR		
Lesson No: 16		Duration of Lesson: <u>1hr</u>	
Lesson Title: Explain	direct stiffness matrix method		
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			
1. Understand the procedure in determination stiffness matrix coefficients.			
2. Understand the properties of stiffness matrix.			
TEACHING AIDS	: white board, Different colour markers		
TEACUINC DOINTS	· ·		

TEACHING POINTS :

- What is stiffness in case rotation and deflection.
- Definition and its role in stiffness matrices.

Assignment / Questions: (2 &2) 1. Discuss the direct stiffness matrix method. (2 &2) 2. List out the properties stiffness matrix.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 14-12-2021	
Semester	: I Unit – II Assembly of stiffness matrices		
Name of the Program	: M.Tech (Structural Engineering)	Year: I	
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 17		Duration of Lesson: <u>1hr</u>	
Lesson Title: General procedure algorithm for assembly stiffness matrices			

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure in assembling of stiffness matrices.
- 2. Understand the importance of assembling of stiffness matrices.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• The steps involved in assembling of stiffness matrices.

Assignment / Questions: (2 & 2) 1. Derive the global stiffness matrix using assembling of element stiffness matrices.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Date: 15-12-2021

Duration of Lesson: 1hr

Semester	:	Ι	Unit – II Assembly of stiffness mat	rices
Name of the Program	:1	M.Tec	ch (Structural Engineering)	Year: I

Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFE	SSOR	

Lesson No: 18

Lesson Title: Discuss on boundary conditions.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the basic properties of supports.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Explain the properties of various support conditions and boundary conditions using in analysis of structures.

Assignment / Questions: (2 & 2) 1. List of properties of supports and boundary conditions.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Date: 17-12-2021

Dept.: Civil Engineering

Duration of Lesson: 1hr

Semester	: I	Unit – II Assembly of stiffness matrices		
Name of the Program : M.Tech (Structural Engineering) Year: I				

Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001

Name of the Faculty : Dr.GVV Satyanarayana.

Designation: PROFESSOR

Lesson No: 19

Lesson Title: Solutions of stiffness matrix equations.

Lesson The. Solutions of stillless matrix equation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand in solving the simultaneous equations formed by stiffness matrix.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Explain the procedure for solving the stiffness matrix equations.

Questions: (2& 2) 1. Solve stiffness matrix co-efficient formed by direct angular transformations.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 17-12-2021		
Semester	: I Unit – II Assembly of stiffness matrices			
Name of the Program	: M.Tech (Structural Engineering)	Year: I		
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001		
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering		
Designation: PROFE	SSOR			
Lesson No: 20		Duration of Lesson: <u>1hr</u>		
Lesson Title: Solutions of stiffness matrix equations.				
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				

1. Understand in solving the simultaneous equations formed by stiffness matrix.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the procedure for solving the stiffness matrix equations.

Assignment / Questions: (2 & 2) 1. Solve stiffness matrix co-efficient formed by direct linear transformations.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Date: 21-12-2021

Duration of Lesson: 1hr

Semester	: I	Unit – II Assembly of stiffness ma	atrices
Name of the Program	: M.Teo	ch (Structural Engineering)	Year: I
Course/Subject	:Matrix	x Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GV	/V Satyanarayana.	Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 21

Lesson Title: Solving old question paper problems

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Evaluate the statically indeterminate beams by stiffness matrix method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the step wise procedure to analyze a statically indeterminate beam using stiffness matrix method.

Assignment / Questions: (2 & 2) 1. Analyse a statically indeterminate beam by displacement method

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 22-12-2021

Duration of Lesson: 1hr

Semester	:	Ι	Unit – II Assembly of stiffness matrices

Name of the Program : M.Tech (Structural Engineering) Year: I

Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering

Name of the Faculty : Dr.GVV Satyanarayana.

Designation: PROFESSOR

Lesson No: 22

Lesson Title: Solving old question paper problems

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Evaluate the statically indeterminate beams by stiffness matrix method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

Explain the step wise procedure to analyze a statically indeterminate beam using • stiffness matrix method.

Assignment / Questions: (2 & 2) 1. Analyse a statically indeterminate beam by displacement method

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 24-12-2021
Semester	: I Unit – II Assembly of stiffness ma	trices
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFES	SSOR	
Lesson No: 23		Duration of Lesson: <u>1hr</u>
Lesson Title: Solving	old question paper problems	
INSTRUCTIONAL/L	ESSON OBJECTIVES:	
On completion of this	lesson the student shall be able to:	

1. Evaluate the statically indeterminate beams by stiffness matrix method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the step wise procedure to analyze a statically indeterminate beam using stiffness matrix method.

Assignment / Questions: (2 & 2) 1. Analyse a statically indeterminate beam by displacement method

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 24-12-2021
Semester	: I Unit – III Introduction about stif	fness matrix method
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFE	SSOR	
Lesson No: 24		Duration of Lesson: <u>1hr</u>

Lesson Title:Introduction about stiffness matrix or displacement method and applications to indeterminate beams

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any continuous beam having static indeterminate structure.
- 2. Calculate the moments at supports using stiffness matrix method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Analyze the continuous beams using stiffness matrix method
- Evaluate the support moments using stiffness matrix method

Assignment / Questions: (3& 3) 1. Evaluate the support moments for given loading using displacement Method.

(3& 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Semester : I Unit – III Introduction about stiffness matrix method

Name of the Program : M.Tech (Structural Engineering) Year: I

Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001

Name of the Faculty : Dr.GVV Satyanarayana.

Designation: PROFESSOR

Lesson No: 25

Duration of Lesson: <u>1hr</u>

Dept.: Civil Engineering

Date: 28-12-2021

Lesson Title: Stiffness matrix approach to kinematically in-determinate beams

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Calculate the kinematic indeterminacy (KID)of given beam.
- 2. Understand in calculation of support moments

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Explain the procedure to evaluate KID of the given structure.
- Evaluate the support reactions and moments in continuous beams subjected various loading using stiffness matrix method.

Assignment / Questions: (3 & 3) 1. Evaluate support reaction of a given continuous beam using displacement method.

(3 & 3) 2. Evaluate the support moments of a continuous beams using displacement method.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 29-12-2021
Semester	: I Unit – III Introduction about stif	fness matrix method
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFE	SSOR	
Lesson No: 26		Duration of Lesson: <u>1hr</u>

Lesson Title: Methodology to calculate the redundants forces at beam joints using stiffness matrix method.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Analyze the KID structure using displacement method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Analyze the kinematically indeterminate of beams.

Assignment / Questions: (3 & 3) 1. Analyze the kinematically indeterminate structure.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Semester : I Unit – III Introduction about stiffness matrix method

Name of the Program : M.Tech (Structural Engineering) Year: I

Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 27

Duration of Lesson: <u>1hr</u>

Date: 31-12-2021

Lesson Title: Methodology to calculate the redundants forces at beam joints using stiffness matrix method.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. 1. Analyze the KID structure using displacement method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

Analyze the kinematically indeterminate of beams.

1. Assignment / Questions: (3 & 3) 1. Analyze the kinematically indeterminate structure.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 31-12-2021
Semester	: I Unit – III Introduction about stif	fness matrix method
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFE	SSOR	

Lesson No: 28

Duration of Lesson: <u>1hr</u>

Lesson Title: Analyze continuous beams using stiffness matrix method carrying with different loads.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand to analyze continuous beams using stiffness matrix method with kinematic indeterminacy 1,2 or 3.
- 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) after analysis.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Evaluation of KID beams.
 - Draw BMD and SFD after analysis.

Assignment / Questions: (3&3) 1. Analyze KID beams using displacement method under given loading.

(3& 3) 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) for frame.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 04-01-2022
Semester	: I Unit – III Introduction about stif	fness matrix method
Name of the Program	a : M.Tech (Structural Engineering)	Year: I
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFE	SSOR	
Lesson No: 29		Duration of Lesson: <u>1hr</u>
Lesson Title: Analyze	e continuous beams using stiffness matrix me	thod carrying with different

Lesson Title: Analyze continuous beams using stiffness matrix method carrying with different loads and sinking supports

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Analyze continuous beams using stiffness matrix method carrying with different loads and sinking supports

2. To draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) after analysis.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Analyze continuous beams using stiffness matrix method carrying with different loads and sinking supports
- Draw BMD and SFD after analysis.

Assignment / Questions: (3&3) 1. Analyze continuous beams using stiffness matrix method carrying

with different loads and sinking supports

(3 & 3) 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) for portal frame after analysis.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Semester : I Unit – III Introduction about stiffness matrix method

Name of the Program : M.Tech (Structural Engineering) Year: I

Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001

Name of the Faculty : Dr.GVV Satyanarayana. Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 30

Duration of Lesson: <u>1hr</u>

Date: 05-01-2022

Lesson Title: Analyze plane truss by using stiffness matrix methods carrying with different loads

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Analyze the plane truss by using stiffness matrix methods carrying continuous beams with different loadings.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Analyze the plane truss carrying with different loadings.
- Draw BMD and SFD after analysis.

Assignment / Questions: (3 & 3) 1. Analyze the plane truss by using stiffness matrix methods carrying with different loadings.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Semester : I Unit – III Introduction about stiffness matrix method

Name of the Program : M.Tech (Structural Engineering) Year: I

Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 31

Duration of Lesson: <u>1hr</u>

Date: 07-01-2022

Lesson Title: Analyze plane truss by using stiffness matrix methods carrying with different loads

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Analyze the plane truss by using stiffness matrix methods carrying continuous beams with different loadings.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Analyze the plane truss carrying with different loadings.
- Draw BMD and SFD after analysis.

Assignment / Questions: (3 & 3) 1. Analyze the plane truss by using stiffness matrix methods carrying with different loadings.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 11-01-2022
Semester	: I Unit – III Introduction about stiff	ness matrix method
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFES	SSOR	

Lesson No: 32

Lesson Title: Analyze plane frame by using stiffness matrix methods carrying with different loads

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Analyze the plane frame by using stiffness matrix methods carrying continuous beams with different loadings.
- 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) after analysis.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Explain the process to analyze the plane truss by using stiffness matrix methods carrying continuous beams with different loadings.
- Draw BMD and SFD after analysis.

Assignment / Questions: (3 & 3) 1. Analyze the plane frame by using stiffness matrix methods carrying continuous beams with different loadings.

 $(3\&3)\ 2.\ Draw\ Bending\ Moment\ Diagram\ (BMD)\ \&\ Shear\ force\ diagram\ (SFD)\ for\ plane\ frame\ after\ analysis.$

Signature of faculty

Duration of Lesson: 1hr

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Date: 12-01-2022

Duration of Lesson: 1hr

Semester : I Unit – III Introduction about stiffness matrix method

Name of the Program : M.Tech (Structural Engineering) Year: I

Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering

Designation: PROFESSOR

Lesson No: 33

Lesson Title: Analyze plane frame by using stiffness matrix methods carrying with different loads

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Analyze the plane frame by using stiffness matrix methods carrying continuous beams with different loadings.

2. Evaluation of kinematic indeterminacy or total DOF of structure.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Define stiffness in terms of displacement and rotations.
- Evaluation of kinematic indeterminacy of structure..

Assignment / Questions: (3 & 3) 1. Analyze the plane frame by using stiffness matrix methods carrying continuous beams with different loadings.

(3 & 3) 2. Discuss which method is suitable in analysis of structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Semester : I Unit – III Introduction about stiffness matrix method

Name of the Program : M.Tech (Structural Engineering) Year: I

Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001

Name of the Faculty : Dr.GVV Satyanarayana.

Designation: PROFESSOR

Lesson No: 34

Lesson Title: Solve old question paper problems in unit-3

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the analysis of KID structures using displacement method.

 TEACHING AIDS
 : white board, Different colour markers

 TEACHING POINTS
 :

 • Explain old question paper problems in unit-3 using displacement methods.

Assignment / Questions: (3 & 3) 1. Determine the kinematic indeterminacy and applied appropriate

co-ordinates as per dof.

 $(3\ \&\ 3)\ 2.$ Analyse the KID structures using displacement method and draw SFD and BMD's.

Signature of faculty

Date: 25-01-2022

Dept.: Civil Engineering

Duration of Lesson: 1hr

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 28-01-2022
Semester	: I Unit – III Introduction about stiff	fness matrix method
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFE	SSOR	
Lesson No: 35 <u>1hr</u>		Duration of Lesson:
Lesson Title: Solve of	ld question paper problems in unit-3	

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the analysis of KID structures using displacement method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain old question paper problems in unit-3 using displacement methods.

Assignment / Questions: (3 & 3) 1. Determine the kinematic indeterminacy and applied appropriate

co-ordinates as per dof.

(3 & 3) 2. Analyse the KID structures using displacement method

and draw

SFD and BMD's.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 28-01-2022 Semester : I Unit - IV Introduction about special analysis procedures Name of the Program : M.Tech (Structural Engineering) Year: I Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001 Name of the Faculty : Dr.GVV Satyanarayana. Dept.: Civil Engineering **Designation: PROFESSOR** Lesson No: 36 Duration of Lesson: 1hr Lesson Title: Introduction about special analysis procedures **INSTRUCTIONAL/LESSON OBJECTIVES:** On completion of this lesson the student shall be able to:

1. Understand the importance and role of special procedure in analysis of structures.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the methodology of special procedures in analysis of structures.

Assignment / Questions: (4&4) 1. State the need of special procedures in analysis of structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 01-02-2022
Semester	: I Unit – IV Introduction about spec	cial analysis procedures
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFES Lesson No: 37 <u>1hr</u>	SSOR	Duration of Lesson:
Lesson Title: Importa	nce about special analysis procedures	
INSTRUCTIONAL/L	ESSON OBJECTIVES:	
On completion of this	lesson the student shall be able to:	
1. Understand In	portance about special analysis procedures.	
TEACHING AIDS	: white board, Different colour marker	'S

TEACHING POINTS :

• Explain the Importance about special analysis procedures.

Assignment / Questions: (4&4) 1. Write a short note on Importance about special analysis procedures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 02-02-2022 Semester : I Unit – IV Introduction about special analysis procedures Name of the Program : M.Tech (Structural Engineering) Year: I Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001 Name of the Faculty : Dr.GVV Satyanarayana. Dept.: Civil Engineering **Designation: PROFESSOR** Lesson No: 38 Duration of Lesson: 1hr Lesson Title: Static condensation of structures **INSTRUCTIONAL/LESSON OBJECTIVES:** On completion of this lesson the student shall be able to: 1. Understand the importance of Static condensation of structures 2. Analyze the given structures using Static condensation procedure. **TEACHING AIDS** : white board, Different colour markers **TEACHING POINTS** •

- Explain the term Static condensation of structures
- Explain the procedure in analysis of structures using Static condensation.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS : Assignment / Questions: (4&4) 1. What is static condensation? (4& 4) 2. Explain Static condensation and its suitability in analysis of structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 04-02-2022 Semester : I Unit – IV Introduction about special analysis procedures Name of the Program : M.Tech (Structural Engineering) Year: I Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001 Name of the Faculty : Dr.GVV Satyanarayana. Dept.: Civil Engineering **Designation: PROFESSOR** Lesson No: 39 Duration of Lesson: 1hr Lesson Title: Explain Static condensation with suitable example structures **INSTRUCTIONAL/LESSON OBJECTIVES:** On completion of this lesson the student shall be able to: 1. Understand the role of Static condensation in analysis of structures : white board, Different colour markers TEACHING AIDS **TEACHING POINTS** ٠

• Explain the Static condensation with suitable example structures

Assignment / Questions: (4 &4) 1.Explain the term static condensation with suitable example.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 04-02-2022 Semester : I Unit – IV Introduction about special analysis procedures Name of the Program : M.Tech (Structural Engineering) Year: I Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001 Name of the Faculty : Dr.GVV Satyanarayana. Dept.: Civil Engineering Designation: PROFESSOR Lesson No: 40 Duration of Lesson: 1hr Lesson Title: What is sub-structuring? INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to: 1. Understand the principle of sub-structuring. : white board, Different colour markers **TEACHING AIDS TEACHING POINTS**

• Explain the procedure of sub-structuringusing analysis of structures.

Assignment / Questions: (4&4) 1. Explain the sub-structuring procedure in analysis of structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 08-02-2022 Semester : I Unit - IV Introduction about special analysis procedures Name of the Program : M.Tech (Structural Engineering) Year: I Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001 Name of the Faculty : Dr.GVV Satyanarayana. Dept.: Civil Engineering Designation: PROFESSOR Lesson No: 41 Duration of Lesson: 1hr Lesson Title: Importance of sub-structuring in structural analysis INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to: 1. Understand about the importance of sub-structuring **TEACHING AIDS** : white board, Different colour markers **TEACHING POINTS** •

• Explain the role of sub-structuringin analysis of structures.

Assignment / Questions: (4 & 4) 1. Explain the role sub-structuring in analysis of structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 09-02-2022 Semester : I Unit – IV Introduction about special analysis procedures Name of the Program : M.Tech (Structural Engineering) Year: I Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001 Name of the Faculty : Dr.GVV Satyanarayana. Dept.: Civil Engineering Designation: PROFESSOR Lesson No: 42 Duration of Lesson: 1hr Lesson Title: What is effect due to initial and thermal stresses in structures? INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to: 1. Understand the effect due to initial and thermal stresses in structures : white board, Different colour markers **TEACHING AIDS TEACHING POINTS**

• Explain the effects due to initial and thermal stresses in structures

Assignment / Questions: (4& 4) 1. Describe the effects due to initial and thermal stresses in structures

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Semester : I Unit – IV Introduction about special analysis procedures

Name of the Program : M.Tech (Structural Engineering) Year: I

Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001

Name of the Faculty : Dr.GVV Satyanarayana.

Designation: PROFESSOR

Lesson No: 43 <u>1hr</u>

Lesson Title: Solve old question papers in unit-4

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

• Analyse the continuous beams using static condensation.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the procedure in analysis of Continuous beams using static condensation.

• Assignment / Questions: (4& 4) 1. Analyze Continuous beams using static condensation.

Signature of faculty

Date: 11-02-2022

Dept.: Civil Engineering

Duration of Lesson:

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 11-02-2022 Semester : I Unit – IV Introduction about special analysis procedures Name of the Program : M.Tech (Structural Engineering) Year: I Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001 Name of the Faculty : Dr.GVV Satyanarayana. Dept.: Civil Engineering **Designation: PROFESSOR** Lesson No: 44 Duration of Lesson: 1hr Lesson Title: Solve old question papers in unit-4 **INSTRUCTIONAL/LESSON OBJECTIVES:** On completion of this lesson the student shall be able to: 1. Understand the ill effects in analysis of structures when initial and thermal stresses induced in structures. **TEACHING AIDS** : white board, Different colour markers

TEACHING POINTS :

• Explain the ill effects of thermal and initial stresses induced in the structures.

Assignment / Questions: (4& 4) 1. Explain the ill effects of thermal and initial stresses induced in the structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Semester : I Unit – IV Introduction about special analysis procedures

Name of the Program : M.Tech (Structural Engineering) Year: I

Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001

Name of the Faculty : Dr.GVV Satyanarayana.

Designation: PROFESSOR

Lesson No: 45

Duration of Lesson: <u>1hr</u>

Dept.: Civil Engineering

Date: 15-02-2022

Lesson Title: Solve old question papers in unit-4

INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to:

1. Understand the procedure in sub structuring to analyze large structures.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the procedure in sub structuring to analyze large structures.

Assignment / Questions: (4& 4) 1.Explain the procedure in sub structuring to analyze large structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 18-02-2022	
Semester	: I Unit – IV V Shear walls		
Name of the Program	: M.Tech (Structural Engineering)	Year: I	
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFE	SSOR		
Lesson No: 46 <u>1hr</u>		Duration of Lesson:	
Lesson Title: –Introduction about shear walls.			
	<u>ESSON OBJECTIVES:</u> lesson the student shall be able to:		
1. Understand the definition of shear walls.			
TEACHING AIDS: white board, Different colour markersTEACHING POINTS:			
• Explain about	shear walls		

• Explain about shear walls.

Assignment / Questions: (5 & 5) 1.Discus about definition of shear walls.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 18-02-2022 Semester : I Unit – IV V Shear walls Name of the Program : M.Tech (Structural Engineering) Year: I Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001 Name of the Faculty : Dr.GVV Satyanarayana. Dept.: Civil Engineering Designation: PROFESSOR Lesson No: 47 Duration of Lesson: 1hr Lesson Title: Necessity of shear walls in structures and their shapes INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to: Know about importance of shear walls in building constructions. Understand the shapes of shear walls and their role in building constructions. •

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Explain about importance of shear walls in building constructions.
- Explain various shapes of shear walls used in structures.

Assignment / Questions: (5 & 5) 1.Discuss on various shapes of shear walls used in structures.

• (5 & 5) 2. Discuss on importance of shear walls in building constructions.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 22-02-2022
Semester	: I Unit – IV V Shear walls	
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFE	SSOR	
Lesson No: 48 <u>1hr</u>		Duration of Lesson:

Lesson Title: Importance of shear walls in structures and their location in structures.

STRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

• Know about the locations of shear walls and role of shear walls against earthquake or lateral loads acting on structures.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain about the locations of shear walls and role of shear walls against earthquake or lateral loads acting on structures.

Assignment / Questions: (5 & 5) 1. Write about the locations of shear walls and role of shear walls

against earthquake or lateral loads acting on structures.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22

Semester : I Unit – IV V Shear walls

Name of the Program : M.Tech (Structural Engineering) Year: I

Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001

Name of the Faculty : Dr.GVV Satyanarayana.

Designation: PROFESSOR

Lesson No: 49 <u>1hr</u>

Lesson Title: Structural behaviour of large frames with and without shear walls

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the behaviour large frames with and without shear walls

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the behaviour of large frames with and without shear walls.

Assignment / Questions: (5 & 5) 1. Narrate the behaviour of large frames with and without shear walls.

Signature of faculty

Date: 23-02-2022

Dept.: Civil Engineering

Duration of Lesson:

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 25-02-2022 Semester : I Unit – IV V Shear walls Name of the Program : M.Tech (Structural Engineering) Year: I Course/Subject :Matrix Methods in Structural Analysis Course Code: GR20D5001 Name of the Faculty : Dr.GVV Satyanarayana. Dept.: Civil Engineering **Designation: PROFESSOR** Lesson No: Duration of Lesson: 50 1hr Lesson Title: Structural behaviour of large frames with and without shear walls **INSTRUCTIONAL/LESSON OBJECTIVES:** On completion of this lesson the student shall be able to: 1. Understand the behavior large frames with and without shear walls **TEACHING AIDS** : white board, Different colour markers **TEACHING POINTS** :

• Explain the behaviour of large frames	• Explain various approximate methods
with and without shear walls.	of analysis for shear walls.

Assignment / Questions: (5 & 5) 1. Narrate the behaviour of large frames with and without shear walls.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-	22	Date: 25-02-2022
Semester	: I	Unit – IV V Shear walls	
Name of the Program	: M.Te	ch (Structural Engineering)	Year: I
Course/Subject	:Matri	x Methods in Structural Analysis	Course Code: GR20D5001
Name of the Faculty	: Dr.G	√V Satyanarayana.	Dept.: Civil Engineering
Designation: PROFE	SSOR		
Lesson No: 51 <u>1hr</u>			Duration of Lesson:
Lesson Title:Approxi	mate me	thods of analysis for shear walls	
-	s lesson	<u>OBJECTIVES:</u> the student shall be able to: s of analysis against shear walls.	
TEACHING AIDS		white board, Different colour marke	rs

• Explain various approximate methods of analysis for shear walls.

Assignment / Questions: (5 & 5) 1.Discuss on various approximate methods of analysis for shear walls.

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 01-03-2022	
Semester	: I Unit – IV V Shear walls		
Name of the Program	: M.Tech (Structural Engineering)	Year: I	
Course/Subject	:Matrix Methods in Structural Analysis	Course Code: GR20D5001	
Name of the Faculty	: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFE	SSOR		
Lesson No: 52 <u>1hr</u>		Duration of Lesson:	
Lesson Title: Approx	imate methods of analysis for shear walls		
<u>INSTRUCTIONAL/LESSON OBJECTIVES:</u> On completion of this lesson the student shall be able to: 2. Understand in methods of analysis against shear walls.			
TEACHING AID TEACHING POINTS	,	rs	

• Explain various approximate methods of analysis for shear walls.

Assignment / Questions: (5 & 5) 1.Discuss on various approximate methods of analysis for shear walls.

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

EVALUATION STRATEGY

Academic Year : 2021-22	
Semester : I	
Name of the Program: M.Tech (Structural Engineering)	Year: I
Course/Subject: Matrix Methods in Structural analysis Code(GR20D5001	Subject
Name of the Faculty: GVV Satyanarayana	Dept.: Civil Engineering
Designation : PROFESSOR	
1. TARGET:	
A) Percentage for pass: 98%	
b) Percentage of class: 1 st class with distinction - 60%	

2. COURSE PLAN& CONTENT DELIVERY

1st class

(Please write how you intend to cover the contents: i.e., coverage of Units/Lessons by lectures, design, exercises, solvingnumericalproblems, demonstrationofmodels, model preparation, experiments in the Lab., orbyassignments, etc.)

- 40%

3. METHOD OF EVALUATION

3.1 Continuous Assessment Examinations (CAE-I, CAE-II)

- 3.2
 Assignments/Seminars
- 3.3 D Project Review/ Comprehensive viva-voce
- 3.4 🗆 Quiz
- 3.5
 Semester/End Examination
- $3.6 \square$ Others

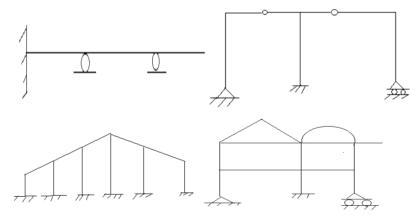
4. List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this Semester.

.....

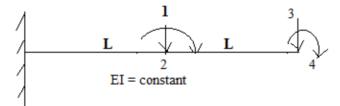
Signature of HOD

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440


TUTORIAL SHEET - 1

Academic Year	:	2021-22	Date: 07-12-2021
Semester : I			
Name of the Program	:M.Te	ech (Structural Engineering)	Year: I
Course/Subject	: Mati	rix methods in Structural Analysis	
Name of the Faculty	:Dr.G	VV Satyanarayana.	Dept.: Civil
Engineering			-


This Tutorial corresponds to Unit No. 1/ LessonIntroduction to Matrix methods of Analysis (GR20D5001)

Q1. What is static and kinematic indeterminacies? Explain both indeterminacies with suitable examples.

Q2. Evaluate the static and kinematic indeterminacies of shown structures.

Q3.What is structural idealization and explain with neat figure. Q4. Differentiate the flexibility matrix for the given co-ordinates.

Q4. Derive the relationship between stiffness and flexibility matrices. Q5. Derive displacement equations for beam and truss elements.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: <u>1,1</u> Outcome Nos.: <u>1,1</u>

Signature of HOD

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

TUTORIAL SHEET - 2

Academic Year	: 2021-22	Date: 24-12-2021
Semester	: I	
Name of the Program	: M.Tech(Structural Engineering)	Year: I
Course/Subject	: Matrix methods in Structural Analysis(GR20D5	5001)
Name of the Faculty	:Dr.GVVSatyanarayana	Dept.: Civil
Name of the Faculty Engineering	:Dr.GVVSatyanarayana	Dept.: Civil
2	:Dr.GVVSatyanarayana : PROFESSOR	Dept.: Civil

This Tutorial corresponds to Unit No. 2/ LessonAssembly of stiffness matrices

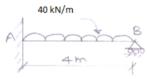
Q1.Explain the procedure in assembling stiffness.Q2.Write about transformation matrix and explain the terms local and global co-ordinates.Q3.Explain direct stiffness methodQ4Discuss on boundary conditionsQ5Solutions of stiffness matrix equationsQ6. Write a computer algorithm to Analyse any structure with suitable example.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: <u>2</u> Outcome Nos.: <u>2</u>,

Signature of HOD

Signature of faculty

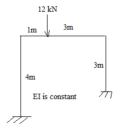

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

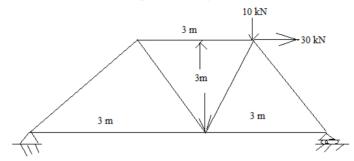
TUTORIAL SHEET - 3

Academic Year: 2021-22Date: 25-01-2022Semester: IName of the Program: M.Tech (Structural Engineering)Year: ICourse/Subject: Matrix methods in Structural Analysis(GR20D5001)Name of the Faculty:Dr.GVV Satyanarayana.Designation: PROFESSOR

This Tutorial corresponds to Unit No. 3/ Lesson Introduction about Flexibility matrix method(Force Method) And application to indeterminate beams

- Q1.Explain the stepwise procedure to analyze the statically indeterminate structures using Force (Flexibility) matrix and Displacement (Stiffness) Methods.
- Q2. Analyse the propped cantilever beam given below using Force ethod.


Q2. Determine the support moments and reactions of fixed beam using flexibility methods.


Q3. Analyze the continuous beam using flexibility matrix method as shown in figure. Let I $_{ab}$ = 1.5 I $_{bc}.$

Q4. Analyse the portal frame as shown below using forcemethod. Take EI as constant.

Q5. Analyse the truss as shown below using flexibilitymatrix method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 3

Outcome Nos.: 3

Signature of HOD

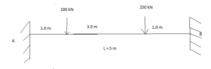
Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

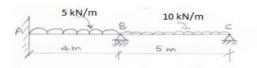
TUTORIAL SHEET - 4

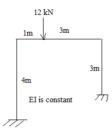
Academic Year	: 2021-22	Date: 11-02-2022
Semester	: I	
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	: Matrix methods in Structural Analysis(GR20D	5001)
Name of the Faculty	:Dr.GVV Satyanarayana.	Dept.: Civil
Engineering		
Designation	: PROFESSOR	

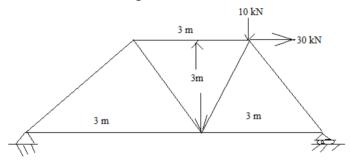
This Tutorial corresponds to Unit No. 4/ Lesson Introduction about stiffness matrix method(Displacement Method)


Q1. Explain the stepwise procedure to analyze the statically indeterminate structures using displacement

or Stiffness matrix and Displacement (Stiffness) Methods.


Q2. Analyse the propped cantilever beam given below using Displacement method.


Q2. Determine the support moments and reactions of fixed beam using stiffness matrix methods.


Q3. Analyze the continuous beam using flexibility stiffness method as shown in figure. Let I $_{ab} = 1.5$ I $_{bc}$.

Q4. Analyse the portal frame as shown below using force method. Take EI as constant.

Q5. Analyse the truss as shown below using stiffness matrix method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related. Objective Nos.: $\underline{4}$

Outcome Nos.: $\underline{4}$

Signature of HOD

Signature of faculty

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

TUTORIAL SHEET - 5

Academic Year: 2021-22Date:28-02-2022Semester: IYear: IName of the Program : M.Tech (Structural Engineering)Year: I

Course/Subject	: Matrix methods in Structural Analysis(G	R20D5001)
Name of the Faculty	:Dr.GVV Satyanarayana.	Dept.: Civil
Engineering		

Designation : PROFESSOR

This Tutorial corresponds to Unit No. 5/ Lesson Special analysis procedures

Q1.Describe the Importance about special analysis procedures using in structural analysis.

Q2.What is static condensation and explain its importance

Q3.Explain static condensation with suitable example

Q4. What is sub-structuring and write Importance of sub structuring in structural analysis

Q5. What is effect due to initial and thermal stress in structures?

Q6.What are the uses of shear walls and their location in large structures?

Q7. What are the varieties or shapes of shear walls?

Q8. Describe the behaviour of shear walls in large frames with and without shear walls.

Q9. Explain the different method in analysis of shear walls.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: <u>5</u> Outcome Nos.: <u>5</u>

Signature of HOD

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 1

Academic Year	: 2021-22	Date:07-12-2021					
Semester	: I						
Name of the Program	: M.Tech (Structural Engineering)	Year: I					
Course/Subject : Matrix Methods in Structural Analysis (GR20D5001)							
Name of the Faculty Engineering	: Dr.G.V.V. Satyanarayana	Dept. Civil					
Designation	: PROFESSOR						
This Assignment corr	esponds to <u>Unit No.1</u>						
Q1. What is Static and indeterminacy for given structures.	d kinematic indeterminacy of structures? Derive stat	ic and kinematic					
 Q2.Differentiate between static determinate and indeterminate structures. Q3.What is transformation matrix and its use? Q4.Deduce the relationship between flexibility and stiffness matrices. Q5. Derive displacement equations for truss and beam elements. Q6. Define the terms dof and redundants at supports. Q7. Differentiate local and global co-ordinates and how they are interconnected 							
Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.							
Objective Nos.:							
Outcome Nos.:							
••••••	•••••••••••••••••••••••••••••••••••••••	•••••					

Signature of HOD

Signature of faculty

Date:

Date:

Bachupally, Kukatpally, Hyderabad - 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 2

Academic Year	: 2021-22	Date:24-12-2021
Semester	: I	
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	: Matrix Methods in Structural Analysis (GR201	<u>D5001)</u>
Name of the Faculty Engineering	: Dr.G.V.V. Satyanarayana	Dept. Civil
Designation	: PROFESSOR	

This Assignment corresponds to Unit No-2.

Q2. Explain the procedure to deduce a stiffness matrix using direct stiffness method.

Q3.Derive stiffness matrix for any structure with assigned co-ordinates.

Q4.What is Rank of matrix and evaluate the rank of matrix for the given matrix?

Q5. What is semi band width and explain its importance in structural analysis?

Q6. Write a computer alogarithm to deduce final forces in a truss member using stiffness matrix approach.

Q7. How to assemble the stiffness matrices?

Q8. Discuss on various boundary conditions used FEM.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: <u>2</u>.....

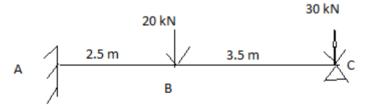
Outcome Nos.: <u>2</u>.....

Signature of HOD

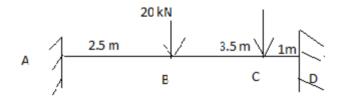
Signature of faculty

Date:

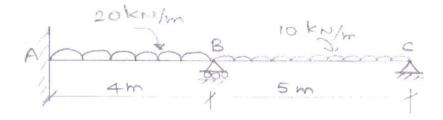
Date:


Bachupally, Kukatpally, Hyderabad - 500 090, (040) 6686 4440

ASSIGNMENT SHEET - 3


Academic Year	: 2021-22	Date:25-01-2022
Semester	: I	
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	: Matrix Methods in Structural Analysis (GR201	<u>D5001)</u>
Name of the Faculty Engineering	: Dr.G.V.V. Satyanarayana	Dept. Civil
Designation Designation	: PROFESSOR : PROFESSOR	

This Assignment corresponds to Unit No.3


Q1.Develop a flexibility matrix for the structure with assigned co-ordinates. Q2. Analyse the propped cantilever beam using flexibility matrix method as shown below.

Q3.Determine the support moments and also draw SFD and BMD's of a fixed beam as shown in the figure below using force method.

Q3.Analyze the continuous beam as shown in figure below using flexibility method if the support C sinking 10 mm. Take $EI = 18000 \text{ kn}\text{-m}^2$.

Q4.Explain the stepwise procedure to analyze a portal frame in flexibility matrix method. Q5. Analyse the truss as shown below using force method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.:<u>3</u>.....

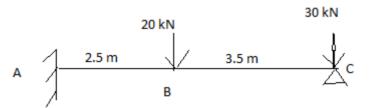
Outcome Nos.:<u>3</u>.....

Signature of HOD

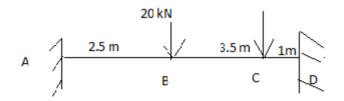
Signature of faculty

Date:

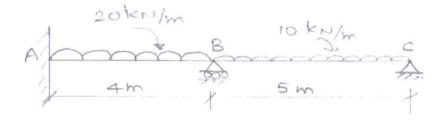
Date:

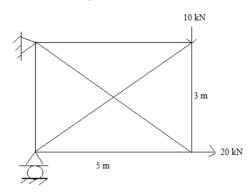

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 4


Academic Year	: 2021-22	Date:11-02-2021
Semester	: I	
Name of the Program	: M.Tech (Structural Engineering)	Year: I
Course/Subject	: <u>Matrix Methods in Structural Analysis (GR201</u>	<u>D5001)</u>
Name of the Faculty Engineering	: Dr.G.V.V. Satyanarayana	Dept. Civil
Designation	: PROFESSOR	
Designation :	PROFESSOR	

This Assignment corresponds to Unit No-4.


Q1.Develop a stiffness matrix for the structure with given dof's. Q2. Analyse the propped cantilever beam using stiffness matrix method as shown below.


Q3. Determine the support moments and also draw SFD and BMD's of a fixed beam as shown in the figure below using displacement method.

Q3. Analyze the continuous beam as shown in figure below using stiffness matrix method if the support C sinking 10 mm. Take $EI = 18000 \text{ kn}\text{-m}^2$.

Q4. Explain the stepwise procedure to analyze a portal frame in stiffness matrix method. Q5. Analyse the truss as shown below using force method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.:		
<u>4</u>	 •••••••••••••••••	

Outcome Nos.: <u>4</u>.....

Signature of HOD

Signature of faculty

Date:

Date:

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 5

Academic Year	: 2021-22	Date:28-02-2022			
Semester	: I				
Name of the Program	: M.Tech (Structural Engineering)	Year: I			
Course/Subject	: Matrix Methods in Structural Analysis (GR201	<u> </u>			
Name of the Faculty Engineering	: Dr.G.V.V. Satyanarayana	Dept. Civil			
Designation	: PROFESSOR				
This Assignment corr	esponds to <u>Unit No-5.</u>				
 Q1. Explain the Importance about special analysis procedures. Q2. What is static condensation and explain its importance? Q3.Explain static condensation with suitable example. Q4.What is sub-structuring and explain the Importance of sub structuring in structural analysis? Q5.What is effect due to initial and thermal stress in structures? Q6. Discuss in analysis of special structures. Q7. Explain the term static condensation and describe with suitable example. Q8. What is shear wall and list various types of shear walls. Q9. Explain the role of shear walls in large structures and also explain with their locations. Q10. Describe the behaviour of shear wall in large frames with and without shear walls. Q11. Explain the different analysis methods of shear walls. 					
_	tions / Problems / Exercises which you would like to Objectives/Outcomes to which these Questions / Pro	-			
Objective Nos.: <u>5</u>					
Outcome Nos.:					

<u>5</u>.....

Signature of HOD

Signature of faculty

Date:

Date:

RUBRIC SHEET

Academic Year: 2021-22Semester: IName of the Program: M.Tech Structural EngineeringYear: ICourse/Subject: Matrix Methods in Structural AnalysisCourse Code:GR20D5001Name of the Faculty: Dr.G V VSatyanarayanaDept.: Civil EngineeringDesignation: ProfessorObjective: To learn basics and concepts of Structural analysis.

Student Outcome: Behavioural studies or analyze the structural elements under loading and study different parameters such as induced forces, bending moments, shear forces, stresses, strains, deflection etc.,

Name of the		1	Developing	Development	Accomplished	Exemplary	Score
Student	Performance Criteria	1	2	3	4	5	
21241D 2010	Analysis of structural elements The level of knowledge on types structures such as arches, statically determinate and indetermin ate beams	Low level of knowledge on calculation of support reactions Low level of knowledge on types structures such as arches, statically determinate and indeterminat e beams	Able to discuss the principles of energy theorems Able to discuss types of structures and their importanc e in civil engineeri ng constructi ons	Ability to explain the application of energy theorems Ability to explain types of structures and their importance in civil engineering constructio ns	Full knowledge on application of energy theorems Full knowledge on types of structures and their importance in civil engineering construction s	Analyzing and implement in structures Analysing and application of knowledge on types of structures and their importance in civil engineering constructions	5
	The level of knowledge to analyse various engineering structures.	Low level of knowledge to analyse various engineering structures.	Ability to discuss and to study the various engineeri ng structures	Ability to explain various engineering structures.	Full knowledge on various engineering structures.	Analysing and implementing the knowledge of various engineering structures.	3
		of knowledge to analyse various engineering	ofofknowledgeknowledgeto analyseto analysevariousvariousengineeringengineering	ofofto discussknowledgeknowledgeand toto analyseto analysestudy thevariousvariousvariousengineeringengineeringengineeringstructures.structures.ng	ofofto discussexplainknowledgeknowledgeand tovariousto analyseto analysestudy theengineeringvariousvariousvariousstructures.engineeringengineeringengineeringstructures.structures.ng	ofofto discussexplainknowledgeknowledgeknowledgeand tovariouson variousto analyseto analysestudy theengineeringengineeringvariousvariousvariousstructures.structures.engineeringengineeringengineeringengineeringstructures.structures.ngii	ofofto discussexplainknowledgeandknowledgeknowledgeand tovariouson variousimplementingto analyseto analysestudy theengineeringengineeringthevariousvariousvariousstructures.structures.knowledge ofengineeringengineeringengineeringengineeringengineering

MAPPING

GR20D5001 Matrix Methods in Structural Analysis	Course Outcomes				
Course Objectives	1	2	3	4	5
1	X				
2		X			
3			Х		
4				X	
5					Х

Assessments

- 1. Assignment 2. Internal Examination 3. External Examination
- 4. Practical Projects 5. Viva

GR20D5001 Matrix Methods in Structural Analysis	Course Objectives				
Assessments	1	2	3	4	5
1	Х	Х	Х	Х	Х
2	Х	Х	Х	Х	Х
3	Х	Х	Х	Х	Х
4					
5					

GR20D5001 Matrix Methods in Structural Analysis	Course Outcomes				
Assessments	1	2	3	4	5
1	Х	X	X	Х	X
2	Х	X	X	Х	Х
3	Х	X	X	Х	X
4					
5					

Course	Program Outcomes							
	1	2	3	4	5	6		
GR20D5001 Matrix Methods in Structural Analysis	X	X	X	X	X	Х		

GR20D5001 Matrix Methods in Structural Analysis	Program Outcomes			nes		
Course Outcomes	1	2	3	4	5	6
Evaluate the static and kinematic indeterminacy and generate stiffness and flexibility matrices.	М		М	М	Н	М
Analyse the skeleton structures using stiffness method under different coordinate system.	М		М	М	М	М
Use flexibility matrix method to analyse different structures.	М		Н	М	М	М
Use stiffness matrix method to analyse different structures.	М	М	Н	М	Н	М
Analyse various types of structural members using special analysis procedures and shear walls in multi storied constructions	М	М	М	М	М	М

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

COURSE COMPLETION STATUS

-Academic Year :

Semester : I

Name of the Program: M.Tech (Structural Engineering) Year: I

2021-22

Course/Subject: Matrix Methods in Structural Analysis Course Code: GR20D5001

Name of the Faculty: Dr. GVVSatyanarayanaDept.: Civil Engineering

Designation: PROFESSOR

Actual Date of Completion & Remarks, if any

Units	Remarks	No. of Objectives Achieved	No. of Outcomes Achieved
Unit 1	Introduction to Matrix methods of Analysis	1	1
Unit 2	Assembly of stiffness matrices	2	2
Unit 3	Introduction about Flexibility matrix method(Force Method) And application to indeterminate beams	3	3
Unit 4	Introduction about Special analysis procedures	4	4
Unit 5	Special analysis procedures	5	5

Signature of HOD

Signature of faculty

Date:

Date:

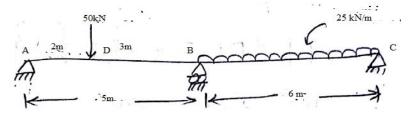
Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.

GokarajuRangarajuInstitute ofEngineeringandTechnology(Autonomous)DepartmentofCivilEngineering IM.Tech.ISemesterMIDIIEXAMINATION February-2022


Matrix Methods in Structural Engineering (GR20D5001)

Time:75Minutes Dateofexamination 07-02--202 Max.Marks:15Marks Answerallquestions 3x5=15Marks D RollNo. Name: Part-B 1. a)Distinguish between Static and Kinematic indeterminacies. 2M(CO1)[BL4] b)Evaluate Static and Kinematic of given structures:3 M (CO 3) OR c) Determine kinematic indeterminacy of above structures 3 M (CO1)[BL4] d) Distinguish between local and global coordinates. 2 M (CO 1) [BL4] 2. a) Compare stiffness matrix using direct stiffness method. 2 M (CO2) [BL4]

b)Explain the procedure for assemblage of stiffness matrices.


OR

c) Evaluate the stiffness matrix for the given below structure:

3. (a) Analyse the beam as shown below using Flexibility matrix method.

M (CO3) [BL4]

OR (b) Analyse the truss as shown below using Flexibility matrix method.

3 M (CO4) [BL4]

5 M (CO4) [BL4]

5 M (CO5) [BL4]

GokarajuRangarajuInstituteof EngineeringandTechnology(Autonomous) DepartmentofCivilEngineering IM.Tech.ISemesterMIDIIEXAMINATION February-2022

Matrix Methods in Structural Engineering (GR20D5001)

]

]

]

]

]

]

]

]

Time: 15Minutes	Dateofexamination:-02-2022	Max.Marks:5Marks
Answerallquestions	Allquestionscarryequalmarks	10X 1=5Marks

Nar	ne:_				
			D		

Choosethecorrectanswers. 1. The origin lies in natural co-ordinate system is []	
A) At centre of element B) Any one side of element C) away from element D) Either A or B	
2. The value of increases means the deformation leads to [
A)IncreaesB) decreasesC) Can't sayD) Either A or B	
 3. The relation between Flexibility and Stiffness will be proportional to [A) Directly B) Inverse C) Either A or B D) None of the above 	
4. The moment required to produce unit rotation when far end is hinged or simply supported [
A) $\frac{2EI\theta}{L}$ B) $\frac{EI\theta}{L}$ C) $\frac{4EI\theta}{L}$ D) $\frac{6EI\theta}{L}$	
5. The moment required to produce unit rotation when far end is fixed [
A) $\frac{6El\delta}{l^2}$ B) $\frac{3El\delta}{l^2}$ C) $\frac{4El\delta}{l^2}$ D) $\frac{El\delta}{l^2}$	
6 Which matrix method is suitable when DSI >KID [A) Flexibility Matrix method B)Stiffness matrix methodC) Either A or BD) both are not suitable	
7. If given structure dof is equals to 2, the size of stiffness matrix is equals to []	
A) 2 X 2 B) 1 X 1 C) 3 X 3 D) 2 x1	
8. The number of redundants at hinged support will be equal to [A) 1 B) 2 C) 3 D) Zero	
9. The degree of freedom (dof) for fixed support will be equal to [A) 1 B) 2 C) 3 D) Zero	
10. The stiffness matrix method is also known as[A) Flexibility matrix methodB) Force methodC) Displacement methodD) Either A or B	

GokarajuRangarajuInstitute ofEngineeringandTechnology(Autonomous)DepartmentofCivilEngineering IM.Tech.ISemesterMID_I IEXAMINATION March--2022

Matrix Methods in Structural Engineering (GR20D5001)

Time:75Minutes	Dateofexamination 14-03202	Max.Marks:15Marks
	3x5=15Marks	

Name:______ RollNo.

Answer all questions.

Part-B

1. a. Analyze the given frame using force method as shown in figure:1 below:

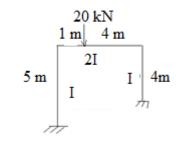


Figure:1BL-4(CO-3) (5M)

OR

b. Analyze the given frame using force method as shown in figure below:

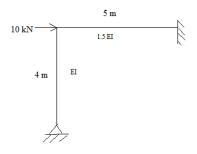
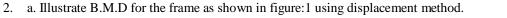



Figure:2 BL-4 (CO-3) (5M)

BL-2 (CO-4) (5M)

D

b.Illustrate B.M.D for the frame as shown in figure:2 using displacement method.

BL-2 (CO-4) (5M)

3. a. Explain static condensation with suitable example.BL-5(CO-5) (5M)

OR

OR

b. What is effect due to thermal stress in structures? BL-1(CO-5) (2M)

c. Distinguish between different methods of analysis of shear wallsBL-4(CO-5) (3M)

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Department of Civil Engineering

I M.Tech. I Semester MID II EXAMINATION February-2022

Matrix Methods in Structural Engineering (GR20D5001)

Time: 15Minutes	Date of examination:-07-02-2022	Max.Marks:5Marks
Answer all questions	All questions carry equal marks	10X ¹ =5Marks

Name:									
			D						

Choose the correct answers. 5. The origin lies in natural co-ordinate system is	[1
B) At centre of element B) Any one side of element C) away from element D) Either A of	or B	
6. The value of increases means the deformation leads toA) Increases B) decreases C) Can't say D) Either A or B	[]
7. The relation between Flexibility and Stiffness will be proportional toB) Directly B) Inverse C) Either A or B D) None of the above	[]
8. The moment required to produce unit rotation when far end is hinged or simply supported	[]
$A) \ \frac{2EI\theta}{L} B) \frac{EI\theta}{L} C) \ \frac{4EI\theta}{L} D) \ \frac{6EI\theta}{L}$		
5. The moment required to produce unit rotation when far end is fixed	[]
A) $\frac{6EI\delta}{l^2}$ B) $\frac{3EI\delta}{l^2}$ C) $\frac{4EI\delta}{l^2}$ D) $\frac{EI\delta}{l^2}$		
6 Which matrix method is suitable when DSI >KIDA) Flexibility Matrix method B)Stiffness matrix method C) Either A or B D) both are not suitable	[le]
7. If given structure dof is equals to 2, the size of stiffness matrix is equals toA) 2 X 2B) 1 X 1C) 3 X 3D) 2 x1	[]
8. The number of redundants at hinged support will be equal toA) 1B) 2C) 3D) Zero	[]
9. The degree of freedom (dof) for fixed support will be equal to A) 1D) Zero	[]
10. The stiffness matrix method is also known asA) Flexibility matrix methodB) Force methodC) Displacement methodD) Either A or	[B]

I M.Tech I Semester Regular Examinations, June 2021

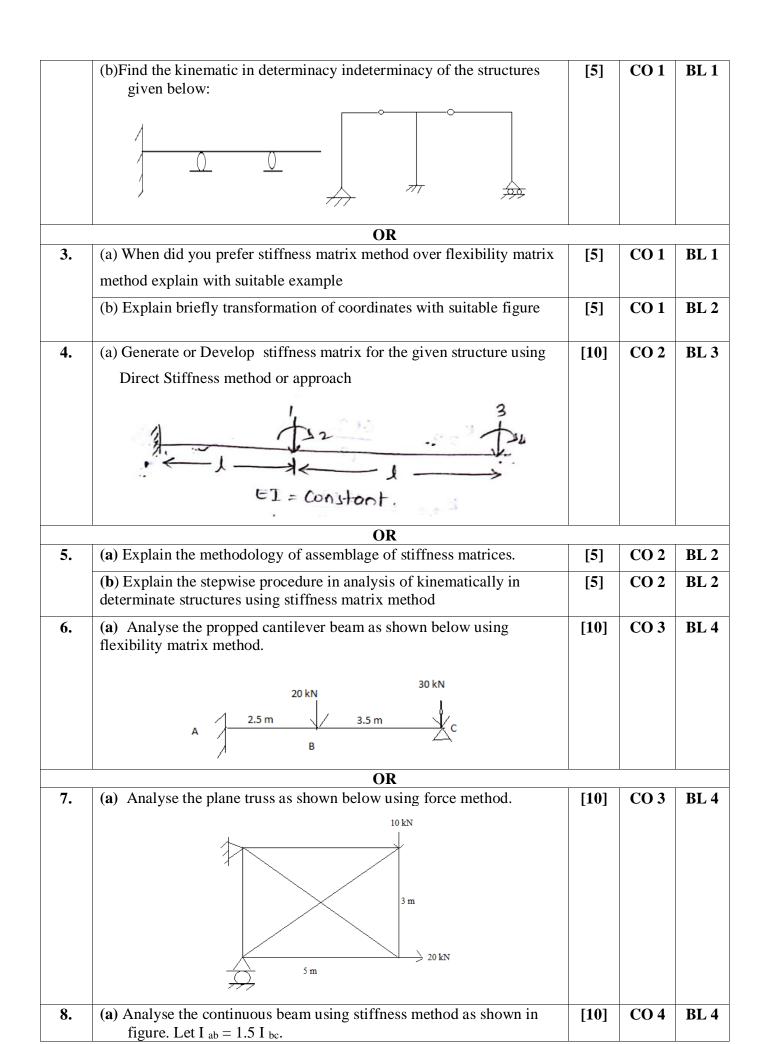
MATRIX METHODS IN STRUCTURAL ANALYSIS

(Structural Engineering)

Max Marks: 70

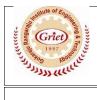
Time: 3 hours

< Note: Type the questions in the given format only, Times New Roman font, size 12 > 12


Instructions:

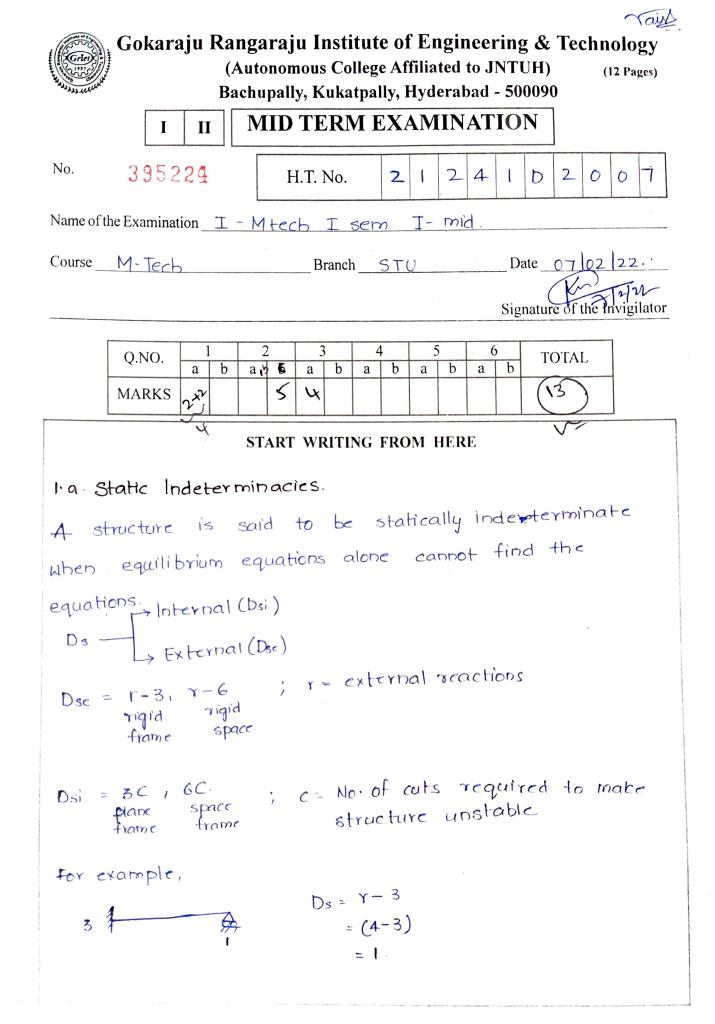
1. Question paper comprises of Part-A and Part-B

2. **Part-A** (for 20 marks) must be answered at one place in the answer book.


3. Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.

	PART – A								
	(Answer ALL questions. All questions carry equal marks)								
1.0	10 * 2 = 20 MarksDistinguish between static and kinematic indeterminacies.	[2]	CO 1	BL 4					
1. a. b.	What is transformation matrix?	[2] [2]	CO 1	BL 4 BL 1					
с.		[2]	CO 1 CO 2	BL 1 BL 1					
	The stiffness matrix of a beam is given as $\begin{bmatrix} 5 & 2 \\ 2 & 4 \end{bmatrix}$, when the nodal	[=]	001						
	forces are $\begin{bmatrix} 10\\7 \end{bmatrix}$ find the nodal displacements								
d.	Explain about local and global coordinates with suitable sketches	[2]	CO 2	BL 2					
e.	Evaluate the flexibility matrices for the given co-ordinate system:	[2]	CO 3	BL 5					
	A EI = constant + D2								
f.	Determine the static in determinacy of the given structure.	[2]	CO 3	BL 5					
g.	Evaluate the stiffness matrices for the given dof's: $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	[2]	CO 4	BL 5					
h.	List out the properties of stiffness matrix.	[2]	CO 4	BL 1					
i.	Explain the effects temperature in various structures	[2]	CO 5	BL 2					
ј.	Draw various types of shear walls with their advantages	[2]	CO 5	BL 1					
	PART - B)							
	(Answer ALL questions. All questions carry equal mar) 5 * 10 = 50 Marks	KS)							
2.	(a) Define the term of degree of freedom and explain in detail with	[5]	CO 1	BL 5					
	suitable structures.								

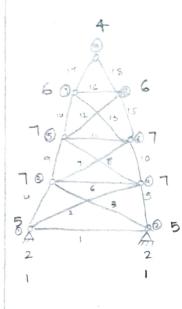
	5 kN/m 10 kN/m 4 m $7 5 m$ 7			
	OR			
9.	(a) Analyse the portal frame as shown below using displacement method. Take EI as constant.	[10]	CO 4	BL 4
10.	(a) Explain the term static condensation and describe with suitable example	[5]	CO 5	BL 2
	(b) Discuss in analysis of special structures.	[5]	CO 5	BL 6
	OR			
11.	(a) Discuss the behaviour of shear wall in large frames with and without shear wall.	[5]	CO 5	BL 6
	(b) Explain any two different analysis methods of shear walls.	[5]	CO 5	BL 2


GokarajuRangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

	Ma	atrix Methods in Structural Analysis GR20D500	1 (MID-I)
S.No	Roll No	Name of Student	Maximum Marks (20 M)
1	21241D2001	ATKAPURAM PRASHANTH	13
2	21241D2002	BANDI SRI RAM GOPAL	17
3	21241D2003	CHALLA MADHAVI	15
4	21241D2004	PAMMI DIVYA	13
5	21241D2005	DUMMA UMESH KUMAR	18
6	21241D2006	K LATHASREE	17
7	21241D2007	MARIYALA VAISHNAVI	18
8	21241D2008	MAVOORI PRANAV	14
9	21241D2009	MITTAPALLI NAGA ASHWINI	16
10	21241D2010	RAVULA VENKATA SURAJ REDD	7
11	21241D2011	REPATI MOHAN BABU	13
12	21241D2012	ANDHYA CHERUKU	16
13	21241D2013	SHAIK FEROZ	16
14	21241D2014	K SAI CHANDRA	15
15	21241D2015	THOTA HARSHAVARDHAN	11
16	21241D2016	ARIKUPPALA LALITHA	16
17	21241D2017	AMBA RAMA GNANENDRA SAI	12
18	21241D2018	SAI YENUMALA DEVESH GOUD	11
19	21241D2019	RASHANTH KUMAR	AB
20	21241D2020	BAVANDLAPELLI THARUN TEJA	AB
21	21241D2021	GNITISH KUMAR	4

GokarajuRangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

		M.Tech Structural Engg. I yr-I Sem- GR20	2021-22			
Matrix Methods in Structural Analysis GR20D5001 (MID-II)						
S.No	Roll No	Name of Student	Maximum Marks (20 M)			
1	21241D2001	ATKAPURAM PRASHANTH	12			
2	21241D2002	BANDI SRI RAM GOPAL	16			
3	21241D2003	CHALLA MADHAVI	9			
4	21241D2004	PAMMI DIVYA	14			
5	21241D2005	DUMMA UMESH KUMAR	16			
6	21241D2006	K LATHASREE	15			
7	21241D2007	MARIYALA VAISHNAVI	17			
8	21241D2008	MAVOORI PRANAV	11			
9	21241D2009	MITTAPALLI NAGA ASHWINI	16			
10	21241D2010	RAVULA VENKATA SURAJ REDD	5			
11	21241D2011	REPATI MOHAN BABU	8			
12	21241D2012	ANDHYA CHERUKU	11			
13	21241D2013	SHAIK FEROZ	3			
14	21241D2014	K SAI CHANDRA	14			
15	21241D2015	THOTA HARSHAVARDHAN	12			
16	21241D2016	ARIKUPPALA LALITHA	14			
17	21241D2017	AMBA RAMA GNANENDRA SAI	8			
18	21241D2018	SAI YENUMALA DEVESH GOUD	8			
19	21241D2019	RASHANTH KUMAR	AB			
20	21241D2020	BAVANDLAPELLI THARUN TEJA	AB			
21	21241D2021	GNITISH KUMAR	10			



Kinematric indeterminacies.

A structure is said to be kinematically indeterminate. when compatability equations alone cannot find the joint displacement equations.

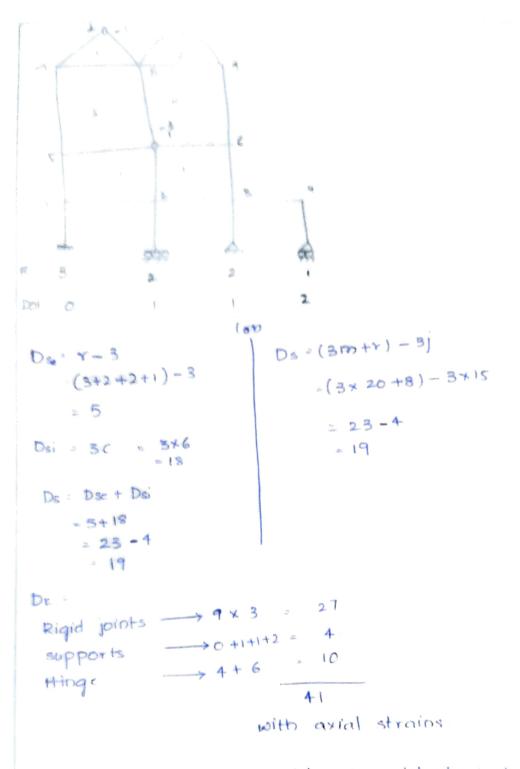
$$D_{k} = NJ - r$$
; N=No. of degree of freedom.
J = Joints
 $r = reactions$.

b. Static and kinematic indeterminacy.

$$D_{s} = (2m+r) - 2j$$
 (pin jointed plane
frame)
 $\gamma = 2+2$
= 4-
 $m = 18$
 $j = 9$
 $D_{s} = (2 + 18 + 4) - 2 + 9$
. 22.

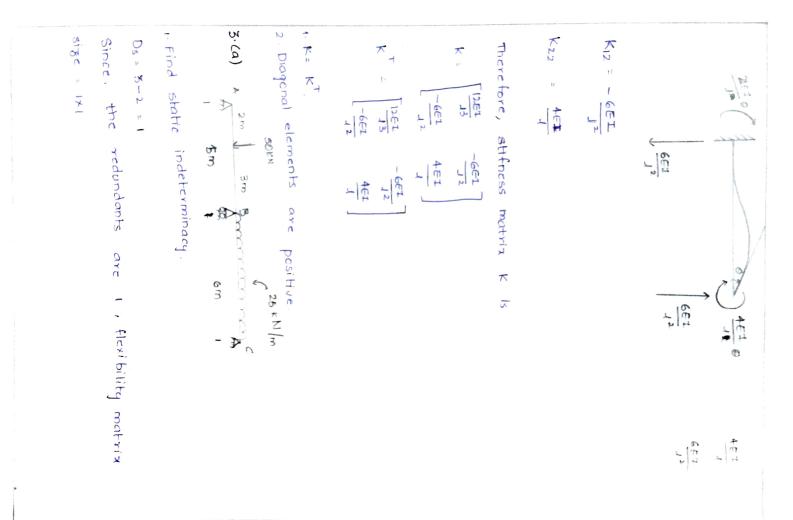
$$Dr = NJ - r$$

$$J = q$$


$$r = 2 + 2$$

$$= 4$$

$$M = RXq - q$$


$$= 18 - q$$

$$= 14$$

41-M: 41-20 = 21 (with out axial strains).

Rc #25×6×€ +166.36 Þ - Ray 5 + 50 + 3 + 166, 36 = 0 166.36 BM of beam ab Ra = 63.27 KN ZM6 = 0 K Rc= 47. 27 KN. ZMb=0 Beam Mab 8/E N 50 EN " 25×62 S 10×2+3 60 w = 112.5 EN-M. 4 min 25EN1 13 н 60 EN-179. 1 B 188.36 " 0 0 Ea+Rb+Rc= (50+25×6) 70 = 200 - (Ra + Rc) ï 89.46 * 200

1 M.Tech. ISemester MID I EXAMINATION February-2022 Instituteof EngineeringandTechnology (Autonomous) Department of Civil Engineering GokarajuRangaraju

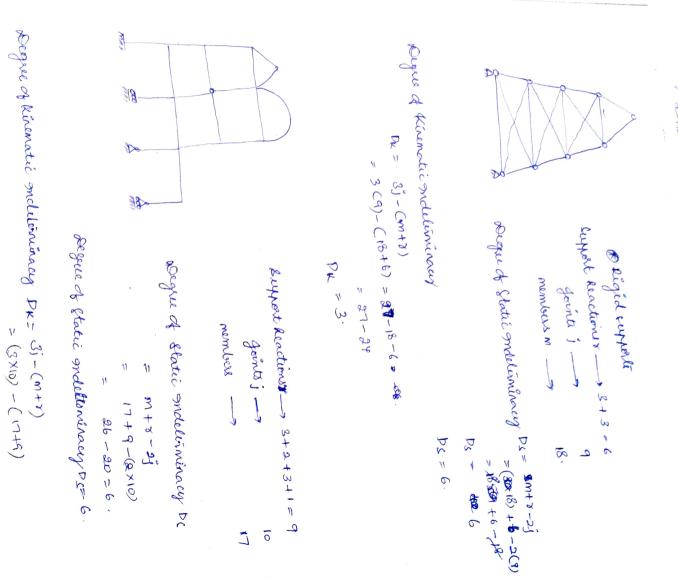
Matrix Methods in Structural Engineering (GR20D5001)

Answerallquestions Dateofexamination:-07-02-2022 (FN) Allquestionscarryequalmarks

Time: 15Minutes

Max.Marks : 5Marks 10 X 1/2=.5Marks

9. The degree of freedom (dof) for fixed support will be equal to <u>O</u> A) 1 B) 2 C) 3 D) Zero	8. The number of redundants at hinged support will be equal to <u>2</u> A) 1 B) 2 C) 3 D) Zero	7. If given structure dof is equals to 2, the size of stiffness matrix is equals to (2×2) A) 2 X 2B) 1 X 1C) 3 X 3D) 2 x1	 6 Which matrix method is suitable when DSI >KID - Fle אולטוֹנוֹדץ ראה ליוֹא. A) Flexibility Matrix method B)Stiffness matrix method C) Either A or B D) both are not suitable 	A) $\frac{6EI\delta}{l^2}$ B) $\frac{3EI\delta}{l^2}$ C) $\frac{4EI\delta}{l^2}$ D) $\frac{EI\delta}{l^2}$	5. The moment required to produce unit rotation when far end is fixed $\frac{4\in 1}{\sqrt{2}}$.	A) $\frac{2EI\theta}{L}$ B) $\frac{EI\theta}{L}$ C) $\frac{4EI\theta}{L}$ D) $\frac{6EI\theta}{L}$	4. The moment required to produce unit rotation when far end is hinged or simply supported	 The relation between Flexibility and Stiffness will be proportional to A) Directly B) Inverse C) Either A or B D) None of the above 	 The value of increases means the deformation leads to	Choosethecorrectanswers. [A 1. The origin lies in natural co-ordinate system is	Name: M. Vaisboavi 2 1 2 4 1 0 2 00 1
Ā		×.			\sum	Ċ		Za Za			


10. The stiffness matrix method is also known as Displacement method

B) Force methodD) Either A or B

aux

C) Displacement method A) Flexibility matrix method

	I II	MID TERM		bad - 500090	
No.	393638	H.T. No.	212	4 I D 2 0	15
Name of th	e Examination M	Tech 1 stear 1 ten	replice MIC	I EXAM MMS	A
Course	m.Tech	Branch	CIVIL	Date 07-02	-2022
				Signature of the I	Talm
Γ	Q.NO. 1	2 3	4 5	6 TOTAL]
-	MARKS	a b a b a	b a b	a b to this	-
	5				
		START WRITING	FROM HER	E	
Lifter	inces between	Static and K	irematic	Indeliminaci	
	Static Indel	erminacy		irematic ordelig	
	and the second	and the second sec			
1. 2	gree of Static	; Indeterminacy	1. Dege	up Kinematic "	Indeler
1. 20:	gree of Static denoted by	, gndetiminauy Ds (2) DSI	1. Degr is d	und Kimematic " unplied by DK (Indeler in) DKI
ا. تە	denoted by	Ds (a) DSI	is d 2. Deg	pre of Klematic	mdelin
ا. ک در 2. ک	denoted by equed static	Ds (2) DSI	is d g. Deg deg	enored tug UK (per of Klematic abro ponds is sondepend	ondelin Lent of
ا. ک در 2. ک	denoted by equed static	Ds (2) DSI	is d g. Deg deg	entred they the c per of kleenatic abro ponds is sondepend actions fromts and	ondelin Ient of . Linember
۱. Di ته 2. D عاد مه	denoted by eque of Static pends upon sec d no cot member	Ds (2) DSI andelininary actions, joints in a given	is d g. Deg deg	entred they the c per of kleenatic abro ponds is sondepend actions fromts and	ondelin Ient of . Linember
۱. Di ته D. Di De De De De De De De De De De De De De	denoted by eque of static pends upon sec d no : of member auctive	Ds (2) DSI endelinitary actions, joints in a given	is d g. Deg deg re re	ended they DK C per of Kleenatic ands is sodepend actions, joints and as of Degree of Ste	ondelin lent of l member stii 9 nde
1. Di is 2. Di du 2. Di 2. Di	denoted by eque of Static pends upon sec d no: of member succleare gree of Static 9	Ds a) DSI andeleninary actions, joints in a geren nd clerninary	is d g. Deg deg re net g. Deg	enerced steg DK (kee of Kleenatic ands is sodepend actions, joints and as of Degree of ste ver of Kinematic o	ondelin lent of . L member stii 9 mele
1. Der is 2. Der 2. Der is t	denoted by eque of Static pends upon sec d no: of member succleare gree of Static 9	Ds (2) DSI endeliminary actions, joints in a given ndeliminary is the dependency	is d g. Deg deg re net g. Deg	ended they DK C per of Kleenatic ands is sodepend actions, joints and as of Degree of Ste	ondelin lent of l member stii 9 nde

PKI

30-23=7.

Ab).

Slight, Saluates, A Seque of parts, activities of the charters

NO1 Adman (Anishing

May 3 -Bath multiprivery in the

Kin Synchradis joint oblighter controls

N. A.

9

Pl. -

ر مرجعي	(CAR)	•
1	<u>.</u>	3
1	3	Ĵ
25	100.00	er.
14	11.11	

- Rondy C

5	
nka	3
6	3 6 C
rain]	11
2	0
Ā	
2	
angarain	
=	

Instituteof EngineeringandTechnology (Autonomous) j

I M.Tech. ISemester MID I EXAMINATION **Department of Civil Engineering** February-2022

Matrix Methods in Structural Engineering (GR20D5001)

Max.Marks : 5Marks

Dateofexamination:-07-02-2022 (FN) Allquestionscarryequalmarks

Time: 15Minutes

Answerallquestions

Name: Thola: flaushavarston

Choosethecorrectanswers.

- .--The origin lies in natural co-ordinate system is A) At centreof element B) Any one side of element C) away from element D) Either A or B
- 2 A)Increaes The value of increases means the deformation leads to B) decreases C) Can't say D) Either A or B
- <u>ယ</u> The relation between Flexibility and Stiffness will be proportional to
- A) Directly B) Inverse C) Either A or B D) None of the above
- 4 The moment required to produce unit rotation when far end is hinged or simply supported

A)
$$\frac{2EI\theta}{L}$$
 B) $\frac{EI\theta}{L}$ C) $\frac{4EI\theta}{L}$ D) $\frac{6EI\theta}{L}$

Ś The moment required to produce unit rotation when far end is fixed

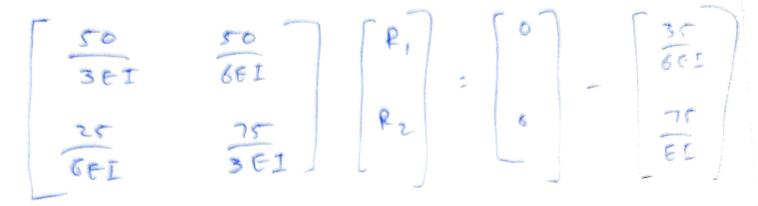
A) $\frac{6EI\delta}{l^2}$
B) $\frac{3El\delta}{l^2}$
C) $\frac{4 E l \delta}{l^2}$
D) $\frac{El\delta}{l^2}$

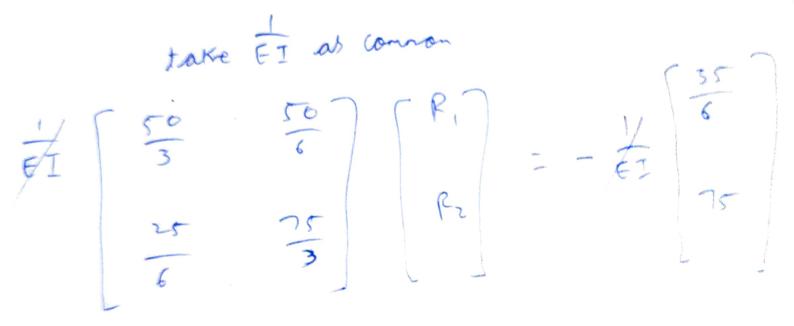
- 6 Which matrix method is suitable when DSI >KID A) Flexibility Matrix method C) Either A or B B)Stiffness matrix method D) both are not suitable
- 7. If given structure dof is equals to 2, the size of stiffness matrix is equals to A) 2 X 2 B) 1 X 1 C) 3 X 3
- 8. The number of redundants at hinged support will be equal to A) 1 B) 2 C) 3 D) Ze D) Zero
- 9. The degree of freedom (dof) for fixed support will be equal to A) 1 B) 2 C) 3 D) 2 D) Zero
- 10. The stiffness matrix method is also known as A) Flexibility matrix method B) Force method
- C) Displacement method
- D) Either A or B

- 8

- - D) 2 x1

- - - - P
- - \mathbf{r}
- -Z 7 L
- b
- qD --D 0
 - 5
 - 10 X 1/2=_5Marks


- 80


Colarsin Rangaraju Institute of Engineering & Technology Margin Rangaraju Institute of Engineering & Technology Marging (Autonomous College Affiliated to JNTUH) (12 Page Aminon Tennon (Autonomous College Affiliated to JNTUH) (12 Page Aminon (Autonomous College Affiliated to JNTUH) (12 Page Aminon (Autonomous College Affiliated to JNUT AMINATION No. 335179 H.T.N. 21124110/000 (Antonomous College Aminon (Antonomous College (Antonomo

2 ET IS 212 F= w= So 5 man for the 11 1.1 11 12 EI(S) (St2) 12 FI 667 35 6062 6EI) 25 11 11 1300 25×36 3 F2 = w two FR = W = SC : 50 + 25 : 75 38I 38I 38I 38I 517

now matrix

(F) [R] = [0 - [51]

After Solving this matrixe we can get the R. & R. Values. the R. & R.

 $R_1 =$

R, I

The Manual
Contract of

mon

	Instituteof EngineeringandTechnology (Autonomous)	GokarajuRangaraju
	(Autonomous)	
4	\leq	

I M.Tech. ISemester MID I EXAMINATION February-2022

Matrix Methods in Structural Engineering (GR20D5001)

Dateofexamination:-07-02-2022 (FN) Allquestionscarryequalmarks

Time: 15Minutes

Answerallquestions

Max.Marks : 5Marks 10 X 1/2=-5Marks

A) $\frac{6EI\delta}{l^2}$	5. The moment requ	A) $\frac{2EI\theta}{L}$	4. The moment req	 The relation bett A) Directly 	2. The value of inc A)Increaes	Choosethecorrectanswers. 1. The origin lies in natura A) At centreof element	Name: R.V. Swap Reddy
B) $\frac{3El\delta}{l^2}$	5. The moment required to produce unit rotation when far end is fixed	B) $\frac{EI\theta}{L}$ C) $\frac{4EI\theta}{L}$	uired to produce unit rota	ween Flexibility and Stiffi B) Inverse	2. The value of increases means the deformation leads to A)Increaes B) decreases C) Can't	ural co-c nt	Reddy
C) $\frac{4 E l \delta}{l^2}$ D) $\frac{E l \delta}{l^2}$	ion when far end is fixed	D) $\frac{6EI\theta}{L}$	4. The moment required to produce unit rotation when far end is hinged or simply supported	 The relation between Flexibility and Stiffness will be proportional to	tion leads to D) Either A or B	I B) Any one side of element C) away from element D) Either A or B	2124102010
		[4]				Either A or B	2010

Which matrix method is suitable when DSI >KID C) Either A or B A) Flexibility Matrix method B)Stiffness matrix method D) both are not suitable D) 2 x1

LA4

4

€ >--

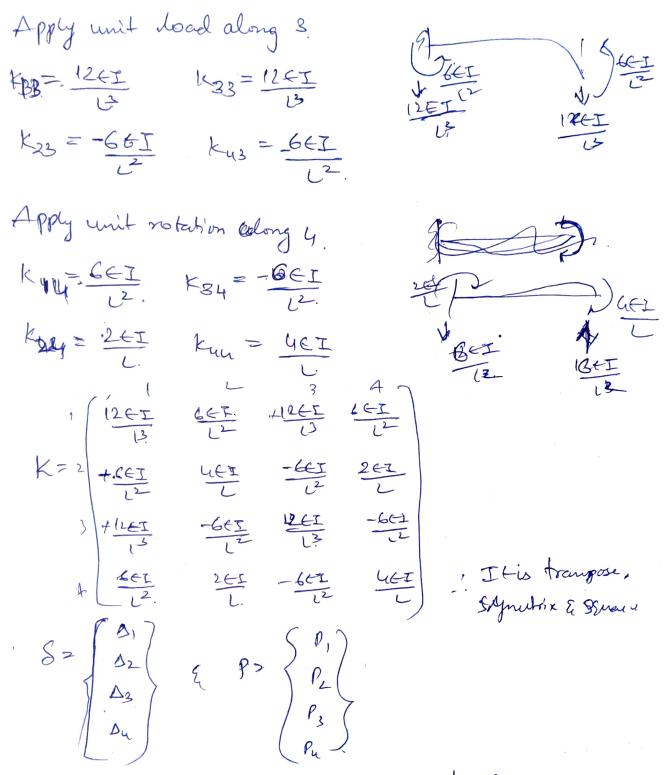
- 9. The degree of freedom (dof) for fixed support will be equal to A) 1 B) 2 C) 3 D) Z 8. The number of redundants at hinged support will be equal to A) 1 B) 2 C) 3 D) Ze 7. If given structure dof is equals to 2, the size of stiffness matrix is equals to $A \cap X \cap X$ B) 1 X 1 C) 3 X 3 A) 1 A) 2 X 2 D) Zero D) Zero
- 10. The stiffness matrix method is also known asA) Flexibility matrix method C) Displacement method D) Either A or B B) Force method

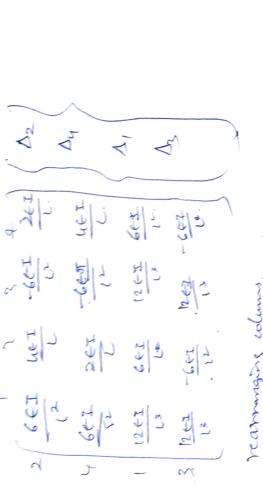
Constrained of NTULIN Restriction of Engineering of Strained to NTULIN Recharging Kinkerpalix, Riverpalix, River	Arty Arty
Н	-4-

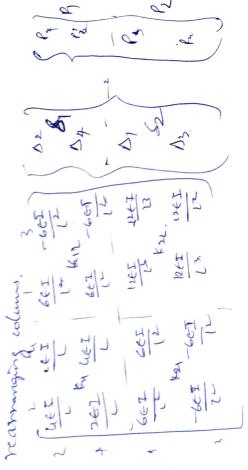
0 ω 0 ESSEN BC, 1B 87402 Stp2. Released Struchur. PBD Rown 5 Anna 05 = 2. 40 **NON** (Or Force Method / 3 6 Apply unit Fleni bility metrix. 5 1 Z S 3 0 hard and 74 unit mode 1 m evaluate the moments. NOT -MB = 10×4=40 km Ma =. O (also as weaking low). ý Sund h. Sur EI 0 , 9 6-4. ample I-SET Oziji 5 Þ R

Step 4.: Craluate joint displacements.

$$S1_1 = \int \frac{Mm}{E_3} dm = \int_{D} \frac{Mm}{E_4} dm \int_{E_3} \frac{Mm}{E_4} dm$$
.
 $S1_2 = \int \frac{Mm}{E_3} dm = \int_{D} \frac{Mm}{E_4} dm + \int_{D} \frac{Mm}{E_5} dm$.
Styp 5. Graluate fluibility coefficients
 $f_{11} = \int \frac{m_1 m_2}{E_3} dm = \int_{D} \frac{m_1 m_2}{E_5} dm + \int_{D} \frac{m_1 m_3}{E_5} dm$.
 $f_{12} = f_{2,1} = \int \frac{m_1 m_2}{E_1} dm = \int_{D} \frac{m_1 m_2}{E_5} dm$.
 $f_{22} = f_{2,1} = \int \frac{m_1 m_2}{E_1} dm = \int_{D} \frac{m_1 m_2}{E_5} dm$.
 $f_{23} = \int \frac{m_2 m_2}{E_1} dm$.
 $f_{24} = \int \frac{m_1 m_2}{E_1} dm$.
 $g_{24} = \int_{D} \frac{m_1 m_2}{E_1} dm$.
 $f_{25} = \int \frac{m_2 m_3}{E_1} dm$.
 $f_{25} = \int \frac{m_2 m_2}{E_1} dm$.
 $g_{25} = \int \frac{m_1 m_2}{E_1} dm$.
 $f_{25} = \int \frac{m_1 m_2}{E_1} dm$.
 $f_{25} = \int \frac{m_2 m_3}{E_1} dm$.
 $g_{25} = \int \frac{m_1 m_2}{E_1} dm$.
 $f_{25} = \int \frac{m_1 m_2}{E_1} dm$.
 $g_{25} = \int \frac{m_1 m_2}{E_1} dm$.
 $g_{25} = \int \frac{m_1 m_2}{E_1} dm$.
 $f_{25} = \int \frac{m_2 m_3}{E_1} dm$.
 $f_{25} = \int \frac{m_1 m_2}{E_1} dm$.


.


Step-7, BMD & SFD.


32) Static condensation.

In static condensation the unknown displacements are kepte at the top of the displacement matrix. The Fow are rearranged as known at the bottom and anknown at the top. simillary the Stiffners matrix also changes. [k*] let us considu pie simply supported beam. A. The A. $D_k = 4$ Size of the matrix is 4 ×4 since trimematic indeterminany is 4 - To get stiffing metrix Apply unit load on 1. R $K_{11} = \frac{12EI}{13}$ 1 12 6HI 12 $k_{21} = + \frac{661}{L^2}$ 1263 1262 $k_{31} = \frac{12 \in I}{L^2}$ $k_{41} = \underline{6}\underline{6}\underline{1}$ Apply anit rotation along 2. 263/ HEE ×.) + 661 K21 2 64I $k_{32} = -\frac{641}{L^2}$ $\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right)$ V K22 = LIEZ K42 = 2EI BEI

.

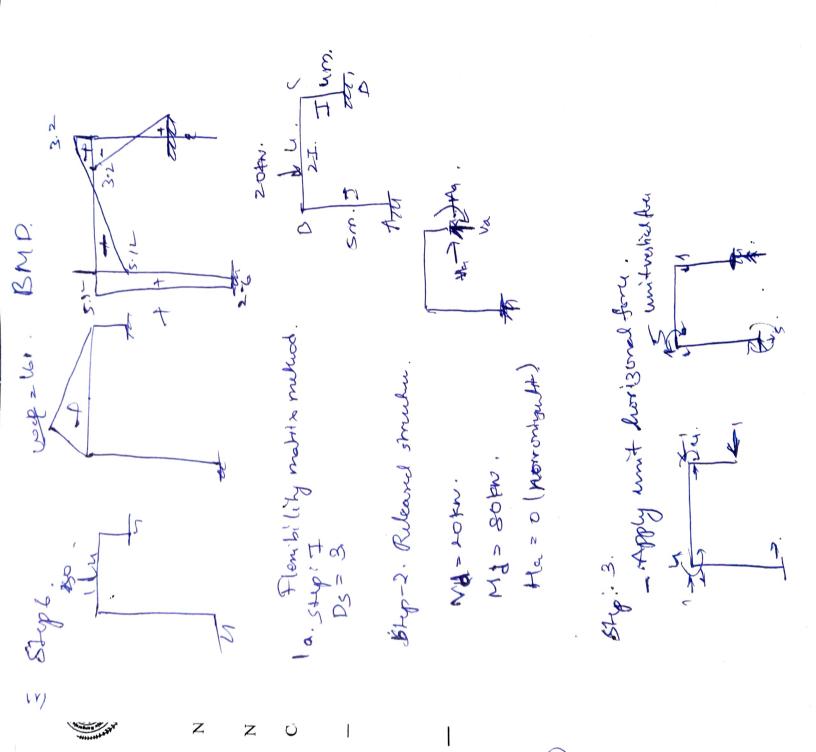
in form as shown wh hw 554 KIL p c con ž The makin

K K

Ž

8 Ó [K1, [S(1]) @, [K22] {S(1) } ... D By uning equilibrium equilions [12] { 81, 3 + [x1] { 81, 3 - -2 9 1 [ku] \$21,3 + [ku] {51,2 51, 20. 10-K.T. P.20

Considereç (2).


$$[k_{21}] \ge k_{1}^{2} = -[k_{22}] \ge k_{22}^{2} \ge \sum \sum k_{22}^{2} = -[k_{22}]^{2} [k_{21}] \ge k_{22}^{2} = -[k_{22}]^{2} [k_{21}] \ge k_{22}^{2} = p_{1}^{2} = p_$$

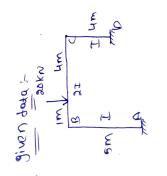
2. a) Displacement Method./Stiffmus method 20tw.
Step:I Unsymphic frame
$$D_{K} = 2$$
, sized the metrix is 2x2.
Step:2. : Released shuther D_{T} D_{T} T D_{T}
Step:2. : Released shuther D_{T} D_{T} T T
 T T T T D_{T} T T D_{T}
Step:3: Evaluate FEMS fract and moments.
 $\overline{M}_{ab} = \overline{M}_{ba} = \overline{M}_{cd} = \overline{M}_{dc} = 0$ (Sime no locals are lacking
 $\overline{M}_{bc} = -\frac{W_{ab}}{U^{2}} = -12.6 \text{ From}.$

Apply unit rotation along Styp 4; Kraluch Stiffnus wificius. Apply unit notation along B Kay = ZEI Kyz = (her) + (her) cd $k_{li} = \left(\frac{l_{l} \in I}{c}\right)_{bc} + \left(\frac{u \in I}{c}\right)_{bc}$ get 1st column $= \frac{l(E1)}{5} + \left(\frac{l(x \in X \ge I)}{5} = 2^{-1} u(E1)$ Ĩ MA = 0-12.8 2-12.8 m. $l_{2} = 0 + B \cdot 2 = 3 \cdot 1 + N m$ joint bouls. 2 24I - 2X1XEL - 0.8ET. 14x2xc-2 + (4x E3) - 2.6 E3 ~ ~ ۶ رو 5 = 2×2JX = - 0.8ET 8 3.0 9 N 1 Let 1

By unity equilibrium equations.

$$K_{ij} & 61 + K_{12} & 52 = -P.$$

 $K_{h} & 81 + K_{22} & 52 = -P.$
 $5^{0} & 4 & 01 + 0.8 & 02 = -(-128)$
 $0.8 & 01 + 0.6 & 02 = -3.2$
 $01 = \frac{6}{4} & 02 = -3.2$
 $M_{12} = \frac{1}{2} & 02 = \frac{1}$



1 🔊 $10x_{2}^{1-5}$ Marks 0 9. In static condensation the unknown displacements kept at _____of displacement matrix (A) P 2 d) Both b & C d) Any where I M.Tech. I Semester MID II EXAMINATION March-2022 0 u) ∫[∞] n Gokaraju Rangaraju Institute of Engineering and Technology Matrix Methods in Structural Engineering (GR20D5001) $\frac{1}{2}$ - $\frac{1}{2}$ d) 2 <u>L</u> d) 2 <u>L</u> 4 EI d) f_{ii} 0(p 0 (p Ω 6 2 4 E 7. Estimate the relative stiffness for the member if far end is hinged 1. Match the following from the following for coefficient of $f_{12} =$ Date of examination 14-03--202 (Autonomous) Department of Civil Engineering 8. Estimate the relative stiffness for the member if far end is fixed 10. The temperature stresses are increased when boundaries are 2 2. The number reactive force at fixed end support will be c) $\int_0^x \frac{m_1 m_2}{p_1}$ Roll No. and the c) Bottom c) 0.75 <u>+</u> c) 0.75 ¹ L c) - ^{12 El} 5. Determine the co-efficient $k_{\rm 22}$ for the given dofs c) - <u>12 E</u>l 4. Determine the co-efficient k_{12} for the given dofs ž c) Fixed 3. As per stiffness matrix the co-efficient of k_{ij} = 6. What is the dof for the given continuous beam c) f_{ij} c) 1 c)] ķ 23 EJ 20.02 Ē $\int_0^x \frac{m_1 m}{EI}$ 11 EL V b) clamped b) $\frac{12 El}{l^3}$ b) <u>12 E</u>I Name : M. Pranov. b) 0.5 ^L L b) 0.5 <u>L</u> b) k_{ii} b) 2 b) 2 (q Max.Marks: 5 Marks 111 Time: 15 Minutes a) $\int_0^x \frac{m_1 m_1}{El}$ a) <u>6 El</u> a) $\frac{6 \text{ El}}{l^2}$ 2 a) k_{ij} (11) a) 3 a) 3 a) _L a) <u>|</u>

Technology	(12 Pages)		
Gokaraju Rangaraju Institute of Engineering & Technology	(Autonomous College Affiliated to JNTUH)	Bachupally, Kukatpally, Hyderabad - 500090	I II MID TERM EXAMINATION
u Ra	0	B	П
karaj			-
Col	and the second se	×117777 CE151	

No.	419035	H	H.T. No.	2 1 2	G	- -	0	0 R Q	ø	1	_	
Name of t	Name of the Examination	MMSA	E-PIM BSMM									
Course	reat then 14 that	rod fr	Branch	Civil			Date 14/03 2022.	14/0	- 2	120		
						S	Signature of the Invigilator	2 Ja	E C	vigil	ator /	
	0 NO	2	3			9						
	a p	a b	a b a	b a	q	a l	T I	TOTAL	,			
	MARKS	37	0					5/1	L			
	A.	START	START WRITING FROM HERE	FROM	HER				¥	4		1

(H)

540-J

5 Kinneric of displacement is

Step-2

Calculate the moments on the each Joima

Meb = Mba = 0

>-1612 J(I)(T) 02 25 marp 1 - - 20 1(H) mbe - wab?

$$MEL = \frac{Walc}{L^2} + \frac{warl}{L^2}$$

$$= \frac{20(1)(w)^2}{5^2} + \frac{20}{5^2} (W^{1})$$

$$= 16 \text{ fw} \text{ Jm}$$

med = mar = 0

P1 = -16 Kulm P2 = 16 Kulm Step-3 Calculation of Stiffnees me

LI - HEI

$$k_{21} = \underbrace{961}_{\lambda} + \underbrace{461}_{\lambda}$$

$$k_{21} = \underbrace{961}_{\lambda}$$

$$k_{21} = \frac{2.62}{\lambda} + \frac{2.61}{\lambda}$$

= $\frac{2.12}{5} + \frac{2.61}{4}$
 $k_{21} = 1.3$ PDT

BLOD-4 Calculation of Rimmetic 22vailion Kit A + Kal D2 + A = 0 <u>4</u> E + 2 + (-(4) : 0 - - 0 K12 D1 + K12 D2 + P2 + +++ + + + + + + + + + + - - - 20

Step-5 (arrulation of moment on-the

OG = - 45.71 KMM

04 = 56.57 mm

$$m_{ba} = m_{bc} + \frac{\mu_{cl}}{\mu_{cl}} \left(2x \delta \beta + 2x \delta \beta \right)$$

$$= -16 + \frac{\mu_{cl}}{5} \left(2x \delta \beta + 2x \delta \beta \right)$$

$$= -16 + \frac{\mu_{cl}}{5} \left(2x \delta \beta + 2x \delta \beta \right)$$

$$= -16 + \frac{\mu_{cl}}{5} \left(2x \delta \beta + 2x \delta \beta \right)$$

$$= 0 + \frac{\mu_{cl}}{L} \left(2x \delta \beta + 2x \delta \beta \right)$$

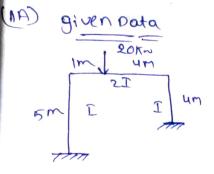
$$= 0 + \frac{\mu_{cl}}{L} \left(2x \delta \beta + 2x \delta \beta \right)$$

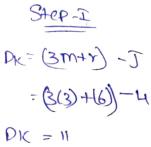
$$= 0 + \frac{\mu_{cl}}{L} \left(2x \delta \beta + 2x \delta \beta \right)$$

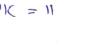
$$= 0 + \frac{\mu_{cl}}{L} \left(2x \delta \beta + 2x \delta \beta \right)$$

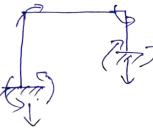
$$= 0 + \frac{\mu_{cl}}{L} \left(2x \delta \beta + 2x \delta \beta \right)$$

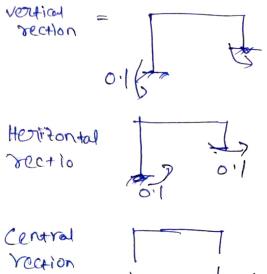
$$= 0 + \frac{\mu_{cl}}{L} \left(2x \delta \beta + 2x \delta \beta \right)$$


$$= 0 + \frac{\mu_{cl}}{L} \left(2x \delta \beta + 2x \delta \beta \right)$$


$$= 0 + \frac{\mu_{cl}}{L} \left(2x \delta \beta + 2x \delta \beta \right)$$


$$= 0 + \frac{\mu_{cl}}{L} \left(2x \delta \beta + 2x \delta \beta \right)$$





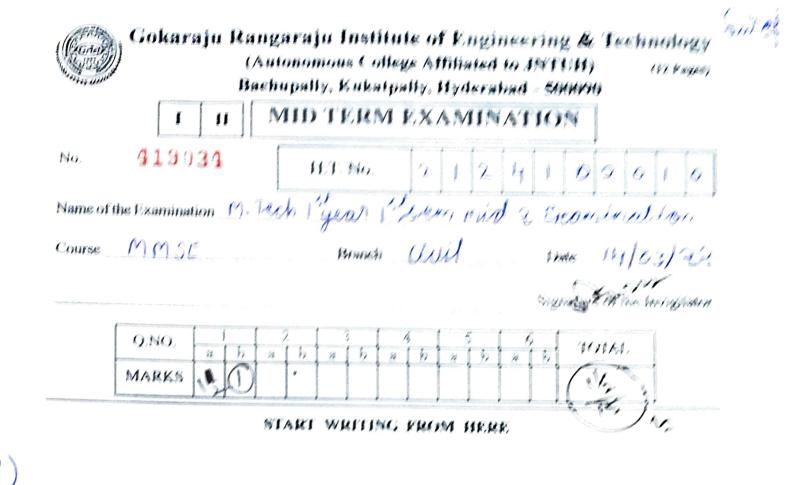
Step-II

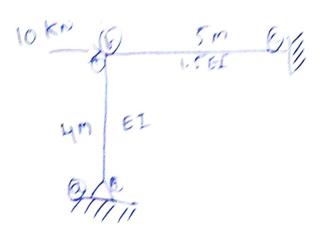
l loi

.

31 3 31 5' O ME 3(b) - ^ which can be formed by high-rise building Can be used by beams, colums and Slabs This shear walk are used to constructe building of resistance of earth 2008s The ghear walls are consider of reniforme Contilever Shear wall Thin shar walk . The methods of analysis of s hear wall L X DXXA 1 elekott Port elevation Plate concrete. wall that to the Structure + 6 4181- MA

V V 0/2 3(b) effect due to thermal stress in structure :-

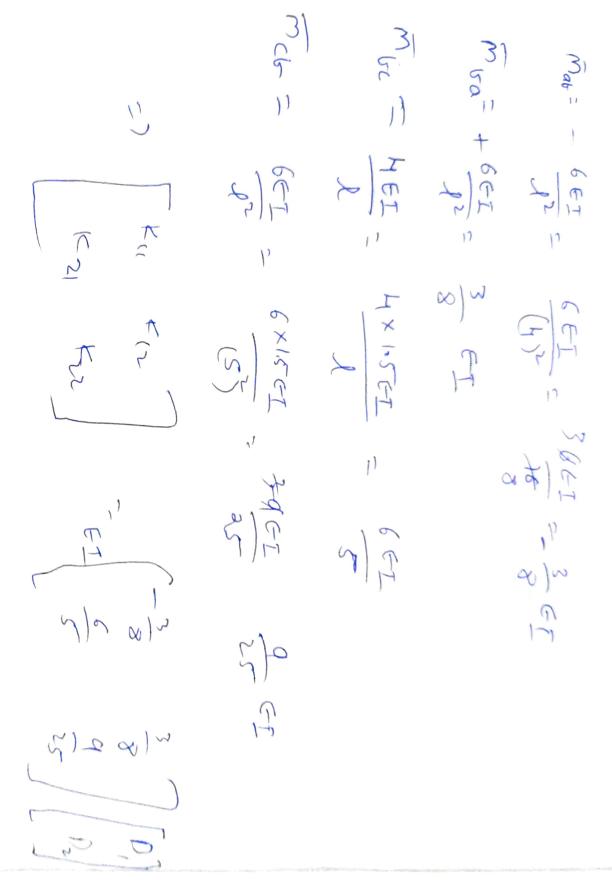



Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Department of Civil Engineering

I M.Tech. I Semester MID II EXAMINATION March-2022

Matrix Methods in Structural Engineering (GR20D5001)

10. The temperature stresses are increased when boundaries are 9. In static condensation the unknown displacements kept at __of displacement matrix [ot] 8. Estimate the relative stiffness for the member if far end is fixed 5. Determine the co-efficient k_{22} for the given dofs a) $\frac{6 E l}{l^2}$ b) $\frac{12 E l}{l^3}$ c) - $\frac{12 E l}{l^3}$ 7. Estimate the relative stiffness for the member if far end is hinged 6. What is the dof for the given continuous beam 4. Determine the co-efficient k_{12} for the given dof's 3. As per stiffness matrix the co-efficient of $k_{ij} =$ 2. The number reactive force at fixed end support will be Name : 1. Match the following from the following for coefficient of f_{12} = Max.Marks: 5 Marks $a) \frac{1}{L}$ Time: 15 Minutes a) $\int_0^x \frac{m_1 m_1}{El}$ a) a) 3 a) Top a) 3 a) k_{ij} b) Free ê 6 EI R. Mohan bab are b) 0.5 ¹/_L b) $0.5\frac{1}{L}$ 9 b) clamped b) 2 b) k_{ji} b) 2 b) Centre b) $\frac{12 El}{l^3}$ 4 $\int_0^x \frac{m_1 m}{El}$ Зm 2 ò EL Date of examination 14-03--202 300 á t, c) 0.75 $\frac{1}{L}$ c) 0.75 $\frac{1}{L}$ c) - $\frac{12 El}{l^3}$ c) $\int_0^x \frac{m_1 m_2}{El}$ c) Bottom <u>)</u> c) f_{ij} c) Fixed c) 1 No. RollNo. 21 24 1 D 20 Ż -1.51 Ĩ 1 d) $\frac{4EI}{7}$ d) Both b & C d) - $\frac{6 El}{l^2}$ d) $2\frac{1}{1}$ d) $2\frac{1}{L}$ d) $\int_0^x \frac{m}{n}$ 0 (b d) f_{ji} 0 (b d) Any where $10x \frac{1}{2} = 5$ Marks ь К 9 σ 9 Ø



DK=2

01=

 $O_{a} =$

there for its = 2×2 notive Of Apply at F, C R 2 ×= " T \I fam ר, 11 11 1) 11 1, ۱' 2 ET JEFE O. RET tel - loads 6 - 12 . 3 0+3-2 L L L L L 2/2/2 2.667 + 1.0 5 5 + 1 42 mm 11 1)~ ~[[1.0 2/2 S M 2×2×0.2 12-3 50 led 3 11 J- His -R 26 KN 204 61 μM 1' 0.3CI

-

0 L I V 6.8 2.6 2.4 0.3

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Department of Civil Engineering I M.Tech. I Semester MID II EXAMINATION March-2022	Matrix Methods in Structural Engineering (JAZ0D2001) Time: 15 Minutes Date of examination 14-03202 Max.Marks: 5 Marks 10x2-5 Marks	Name: $\widehat{H}U$, $\widehat{U}U$, \widehat{U}
() M	Time: 15 M Mark	Name : A 1. Match tf a) $\int_{0}^{x} \frac{m_{11}}{m_{11}}$ 2. The mum 2. The mum 3. As per si 4. Determin 5. Determine a) $\int_{1}^{e} \frac{e_{EI}}{1}$ 6. What is t b) Free b) Free b) Free