GEOTECHNICAL ENGINEERING (GR18A3002)

III- B.Tech – I Semester (AY 2021-22)

> Dr. C. Lavanya Professor

Department of Civil Engineering

Gokaraju Rangaraju Institute of Engineering and Technology

Bachupally, Kukatpally, Hyderabad – 500 090.

Gokaraju Rangaraju Institute of Engineering and Technology

Department of Civil Engineering

Geotechnical Engineering

Course File Check List

S. No.	Name of the Format	
1	Syllabus	
2	Time Table	
3	Program Educational Objectives	
4	Program Outcomes	
5	Course Objectives	
6	Course Outcomes	
7	Students Roll List	
8	Guide lines to study the course, books & references, course design & delivery	
9	Course Schedule	
10	Unit Plan/Course Plan	
11	Evaluation Strategy	
12	Assessment in relation to COB's and CO's	
13	Tutorial Sheets	
14	Assignment Sheets	
15	Rubric for course	
16	Mappings of CO's and PO's	
17	Model question papers	
18	Mid-I and Mid-II question papers	
19	Mid-I marks	
20	Mid-II marks	
21	Sample answer scripts and Assignments	
22	Course materials like Notes, PPT's, Videos, etc,	

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad - 500 090. **Department of Civil Engineering GEOTECHNICAL ENGINEERING** III Year I Sem L:3 T:0 P:0 C:3

Course Code: GR18A3002

UNIIT I Introduction - Types of soils, their formation, Scope of soil mechanics, Basic Definitions and Relationships, Soil as three-phase system. Determination of moisture content by oven dry method, pycnometer and sand bath method. Specific gravity by pycnometer method. Unit weight of soil by Core-cutter method and Sand-replacement method. Consistency limits, Consistency indices, Grain size analysis, Indian standard soil classification system. Plasticity of soil

UNIIT II Permeability of Soil - Darcy's law, validity of Darcy's law. Determination of coefficient of permeability by constant-head method and falling-head method. Field method by pumping- out test. Permeability of stratified soils and factors affecting permeability of soil.

Seepage Analysis - Introduction, characteristics of flow nets, effective stress principle, nature of effective stress, effect of water table, fluctuations of effective stress, effective stress in soils saturated by capillary action, quick sand condition.

UNIIT III Compaction of Soil - Introduction, theory of compaction, laboratory determination of optimum moisture content and maximum dry density. Factors affecting compaction. Compaction in field and compaction control. Stresses in soils - Introduction, stresses due to point load, line load, strip load, uniformly loaded circular area, rectangular loaded area. Pressure bulb and Isobars, Boussinesq's equation, Theory of Newmark's Influence Chart. Appropriate stress distribution methods - equivalent point load method and two to one method.

UNIIT IV Consolidation of Soil - Introduction, comparison between compaction and consolidation, initial, primary & secondary consolidation, spring analogy for primary consolidation, Terzaghi's theory of consolidation, interpretation of consolidation test results, computation of consolidation settlement and secondary consolidation.

UNIT V Shear Strength - Mohr circle and its characteristics, principal planes, relation between major and minor principal stresses, Mohr-Coulomb theory. Types of shear tests - direct shear test and it merits, tri-axial compression test and its behaviour of UU, CU and CD, Unconfined compression test and vane shear test. Computation of effective shear strength parameters.

TEXT BOOKS

1. Gopal Ranjan and ASR Rao, Basic and Applied Soil Mechanics, New Age International Pvt. Ltd, New Delhi, 2nd edition (2000), Reprint (2014).

2. K.R. Arora, Soil Mechanics and Foundation Engineering, Standard Publishers Distributors, Delhi, 5 th edition (2000), Reprint (2009).

REFERENCES BOOKS

1. B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain, Soil Mechanics and Foundations, Laxmi publications Pvt. Ltd., New Delhi, 16th edition, Reprint (2012).

2. C. Venkataramiah, Geotechnical Engineering, New age International publishers (2002), 4 th edition (2012).

3. Dr. P. Purushotham Raj, Soil Mechanics and Foundation Engineering, Pearson Education India (2008).

4. S. K.Gulhati& Manoj Datta, Geotechnical Engineering, Mc.Graw Hill Education Pvt Ltd., New Delhi (2005), 16th Reprint (2013).

5. Braja M. Das, Advanced Soil Mechanics, Taylor and Francis, 3 rd edition (2008).

6. Soil Mechanics by Craig R.F., Chapman & Hall

7. Soil Mechanics in Engineering Practice by Karl Terzaghi, Ralph B. Peck, and Gholamreza Mesri.

8. Geotechnical Engineering: Principles and Practices of SoilMechanics and FoundationEngineering (Civil and Environmental Engineering) by V.N.S.Murthy

Time Table

III YEAR I Sem A & B SECTION

III BTech	(GR18) -	I Semeste	er	AY: 202	20-21 Se	c A & B	
DAY/ HOUR	9:00- 9:55	9:55- 10:50	10:50- 11:45	11:45- 12:25	12:25- 1:15	1:15- 2:05	2:05- 2:55
Monday	GTE (B)	GTE (B)					
Tuesday					GTE (B)	GTE (B)	
Wednesday				LUNCH			
Thursday	GTE (A)	GTE (A)		BREAK			
Friday		GTE (A)	GTE (A)				
Saturday							

Program Educational Objectives

- 1. Graduates of the programme will be successful in technical and professional career.
- 2. Graduates of the programme will have proficiency in solving real time Civil Engineering projects.
- 3. Graduates of the programme will continue to engage in life-long learning with ethical and social responsibility.

Program Outcomes

Graduates of the Civil Engineering programme will be able to

- a. apply knowledge of mathematics, science and fundamentals of Civil Engineering.
- b. analyse problem and interpret the data.
- c. design a system component, or process to meet desired needs in Civil Engineering within realistic constraints.
- d. identify, formulate, analyse and interpret data to solve Civil Engineering problems.
- e. use modern engineering tools such as CAD and GIS for the Civil Engineering practice.
- f. understand the impact of engineering solutions in a global, economic and societal context.
- g. understand the effect of Civil Engineering solutions on environment and to demonstrate the need for sustainable development.
- h. understanding of professional and ethical responsibility.
- i. work effectively as an individual or in a team and to function on multi-disciplinary context.
- j. communicate effectively with engineering community and society.
- k. demonstrate the management principles in Civil Engineering projects.
- 1. recognize the need for and an ability to engage in life-long learning.

PSOs

- 1. Recognize the need for a sustainable environment and design smart infrastructure considering the global challenges.
- 2. Create and develop innovative designs with new era materials through research and development.

COURSE OBJECTIVES

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tecl	n Civil Engineering	Year: III	Section: A & B
Course/Subject: Geotechnical Engineering			Course Code: GR18A3002
Name of the Faculty: Dr. C.Lavanya			Dept.: Civil Engineering
Designation: Professor			

On completion of this Subject/Course the student shall be able to:

S.No	Objectives
1	Educate basic Engineering properties of soil.
2	Provide a strong background in geotechnical engineering in various aspects like permeability and effective stresses.
3	Provide details about properties of compaction and stress distribution.
4	Identify the nature and behaviour of soil during consolidation process.
5	Excel in information about shear strength of soil mass.

Signature of HOD

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090.

COURSE OUTCOMES

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tec	h Civil Engineering	Year: III	Section: A & B
Course/Subject: Geotechnical Engineering			Course Code: GR18A3002
Name of the Faculty: Dr. C.I	Lavanya		Dept.: Civil Engineering
Designation: Professor			

The expected outcomes of the Course/Subject are: At the end of the course, the student will be able to

S.No	Outcomes
1	Identify basic Engineering properties of soil and classify the soil.
2	Perform and evaluate the experiments to determine the permeability and effective stresses of
	soil.
3	Identify, formulate and solve various problems in compaction and stresses in soils.
4	Analyse the mechanism and behaviour of soil under consolidation process.
5	Evaluate the behaviour of shear strength of soil mass.

Signature of HOD

STUDENT ROLL LIST

B.Tech CIVIL Engg. III yr-I Sem- Section A (GR18) 2021-22

S.No	Reg No	Student Name
1	18241A0151	SOHEB PATEL
2	18241A0152	SRIAM SHIVA ADITYA
3	19241A0101	RUHAIL AHMAD LONE
4	19241A0102	AITHA SAI TEJA
5	19241A0103	BARISETTY SHIVA KARTHIK
6	19241A0104	BENDHI VARUN THEJA GOUD
7	19241A0105	BHUKYA VAMSHI
8	19241A0106	BOGE VENKAT ROHITH
9	19241A0107	BONTHA PRANEETHKUMAR
10	19241A0108	CHILUKA RAHUL
11	19241A0109	DANDI KIRAN
12	19241A0110	DAYYA RAGNESH
13	19241A0111	E MANISH GOUD
14	19241A0112	ERRAM SAI PRIYA
15	19241A0113	G DEEPIKA
16	19241A0114	GORANTALA SAI
17	19241A0115	GUGULOTHU SANTHOSH
18	19241A0116	GURIJALA SAI KUMAR
19	19241A0117	GURUJALA SRIDHAR
20	19241A0118	IRUVANTI HEMANTH KUMAR
21	19241A0119	JANGITI VYSHNAVI
22	19241A0120	JARUPLA CHERAN
23	19241A0122	JETTI SREEVANI
24	19241A0123	K SOWMYA
25	19241A0124	KADALI KRISHNASRI SAI
26	19241A0125	KAMAREDDY AKSHAY
27	19241A0126	KATTA SAI KUMAR
28	19241A0127	KOLLURI.TEJASWI
29	19241A0128	KONDAPURAM SRIJA
30	19241A0129	KOTTE VIVEK
31	19241A0130	KRUTHIKA VIJAY PALANGE
32	19241A0131	MADA AKHIL REDDY
33	19241A0132	MADARAM SHRAVAN KUMAR REDDY
34 19241A0133 MADDIGATLA AJAY SAGAR		MADDIGATLA AJAY SAGAR
35	19241A0134	CHANDANA MALPATEL
36	19241A0135	MANDALA CHINNI

1	1	
37	19241A0136	MIREGILLA VIJAYAKUMAR
38	19241A0137	MOHD OBAID KASHIF
39	19241A0138	NARAPAKA MADHAV KUMAR
40	19241A0139	NIMMALA ARSHITHA
41	19241A0141	P SIDDARTHA
42	19241A0142	PAGIDIPALLY AJAY KUMAR
43	19241A0143	PALLAPU NAVEEN
44	19241A0144	PALLE SANATH KUMAR
45	19241A0145	PANTANGI PRANAY
46	19241A0146	PATIL SWAPNIL
47	19241A0147	POLISETTY SAAHAS
48	19241A0148	S.SAITEJA
49	19241A0149	SAI NEERAJ M
50	19241A0150	SATYA SAI PRASANNA REDDY SOLIPETA
51	19241A0151	SHAIK BILAL
52	19241A0152	SHAIK FIRDOUS AYESHA
53	19241A0153	SOORA VIKAS
54	19241A0154	TELLAM SRI SAI PAVANA ROSHINI
55	19241A0155	THALLAPALLY SWARANYA
56	19241A0156	THUMATI VENKATA VAYUNANDHAN
57	19241A0157	UDUMULA NIKHIL REDDY
58	19241A0158	VELISHALA GAYATHRI
59	19241A0159	VENKATA SIDDHARTHA RAJU VEGESNA
60	19241A0160	YASWANTH KURUVA
· · · · · · · · · · · · · · · · · · ·		

STUDENT ROLL LIST

B.Tech CIVIL Engg. III yr-I Sem- Section B (GR18) 2021-22

S.No	Reg No	Student Name	
1	19241A0161	ABDUL RAHEEM	
2	19241A0162	ANEMONI MURALI MANOHAR	
3	19241A0163	ASKANY HARISH SAGAR	
4	19241A0164	BODLA AKSHITH	
5	19241A0165	BURRA VAMSHI KRISHNA	
6	19241A0166	CHERLAKOLA AKHILA	
7	19241A0167	CHINTAPALLI VIKRAM	
8	19241A0168	CHIRRIBOYINA DHANYA	
9	19241A0169	D SREE MADHURI	
10	19241A0170	GADDAM SAHITHI	
11	19241A0171	GAJJALA SUKENDHAR REDDY	
12	19241A0172	YASHASWI GANGAVARAM	
13	19241A0173	GINDHAM ADITYA KUMAR	
14	19241A0174	GUDHETI NARENDAR REDDY	
15	19241A0175	GUMMADI SAI PRATEEK REDDY	
16	19241A0176	HANMAPUR DHEERAJ GOUD	
17	19241A0177	JAVVAJI AISHWARYA	
18	19241A0178	JULAPALLY NITHIN RAO	
19	19241A0179	K NAVEEN	
20	19241A0180	K RAJESHWARI	
21	19241A0181	KACHAVA SURENDAR	
22	19241A0182	KODATHALA INDU	
23	19241A0183	KOTARU SRINIVASA VARAPRASAD	
24	19241A0184	MALOTH RAHUL	
25	19241A0185	MATURI SATHVIK	
26	19241A0186	MD ABDUL MAAJID	
27	19241A0187	MEDARI DAYANA	
28	19241A0188	NARSINGA SANDEEP	
29	19241A0189	PALANATI ROHITH	
30	19241A0190	PURALASETTY BHAVANA	
31	19241A0191	RODDA MALAVIKA REDDY	
32	19241A0192	SAPRAM NAGA SRILOWKYA MUKTHA	
33	19241A0193	SHAIK PARVEZ ANSARI	

34	19241A0194	SIDDELA THARUN KUMAR
35	19241A0195	TALARI CHANDANA SREE
36	19241A0196	VALLEPU KALYAN
37	19241A0197	VRASHAB PATEL
38	19241A0198	YELLAVULA NARENDER
39	19241A0199	BADDELA SAI THARUN
40	20245A0101	AAMANCHI BOWMI
41	20245A0102	AVIRABOINA SAI CHAITHANYA
42	20245A0103	BAIRY B S ANIRUDH
43	20245A0104	DADDU TEJASREE
44	20245A0105	DOPATHI RAVITEJA
45	20245A0106	ERUVENTI NIHARIKA
46	20245A0107	GADDAMIDI AANIL
47	20245A0108	GANDLA RISHIK RAJ
48	20245A0109	GONE NAVEEN KUMAR
49	20245A0110	KOTA VISHAL
50	20245A0111	KUMMARI MAHESH
51	20245A0112	LAKAVATH ANIL
52	20245A0113	MADAVARAM ROHITH
53	20245A0114	MANDALA AKSHITHA
54	20245A0115	M MANJUNATH
55	20245A0116	PORANDLA NAGABHUSHANAM
56	20245A0117	PULISHETTY BHAVANI
57	20245A0118	RACHA KRANTHI RANADEER
58	20245A0119	S MANOJ KUMAR
59	20245A0120	SAMUDRALA MANIDEEP
60	20245A0121	SANGEPAGA GOUTHAM
61	20245A0122	SODADASI RAHUL
62	20245A0123	VANGA HARSHITH
63	20245A0124	CHOLETI VINEETHA
64	20245A0125	GANGULA GRISHMA
65	20245A0126	BOLLAMPALLI SAI POOJITH
66	20245A0127	PAMULAPATI SUMANTH
67	20245A0128	T SANGHAMITHRA
68	20245A0129	ABEDA AKANKSHA
69	20245A0130	DOPPALAPUDI RAMVINEETH SAI
70	20245A0131	PILLY UDAY KIRAN

GUIDELINES TO STUDY THE COURSE/SUBJECT

Academic Year : 2021-22

Semester

Name of the Program: B.Tech Civil Engineering Year: III

: I

Course/Subject: Geotechnical Engineering

Name of the Faculty: Dr. C.Lavanya

Designation: Professor

Guidelines to students

Guidelines to study the Course: Geotechnical Engineering

The course helps the students to learn and understand the importance of geotechnical engineering in different phases of construction. One can learn to determine the various engineering properties of soils. This course makes the students to understand about index properties, consistency of clays, permeability, compaction, consolidation, shear strength, etc of various types of soils.

So the students should have the prerequisites

- knowledge of various building materials
- knowledge of formation of soils

To become expertise in this course, students need to be perfect with the basic concepts of soil mechanics to understand and analyse the behaviour of soils.

Where will this subject help?

- Useful in foundation engineering, analyzing type of foundation, estimating bearing capacity of various soils.
- This course let the students to work with various types of soils.
- This course let the students to determine the engineering properties of soils.
- This course let the students to calculate bearing capacity of soils.

Books / Material

TEXT BOOKS

- 1. Gopal Ranjan and ASR Rao, Basic and Applied Soil Mechanics, New Age International Pvt. Ltd, New Delhi, 2nd edition (2000), Reprint (2014).
- 2. K.R. Arora, Soil Mechanics and Foundation Engineering, Standard Publishers Distributors, Delhi, 5th edition (2000), Reprint (2009).

Section: A & B

Course Code: GR18A3002

Dept.: Civil Engineering

- 3. B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain, Soil Mechanics and Foundations, Laxmi publications Pvt. Ltd., New Delhi, 16th edition, Reprint (2012).
- 4. C. Venkataramiah, Geotechnical Engineering, New age International publishers (2002), 4th edition (2012).

REFERENCES

- 1. Dr. P. Purushotham Raj, Soil Mechanics and Foundation Engineering, Pearson Education India (2008).
- 2. S. K.Gulhati & Manoj Datta, Geotechnical Engineering, Mc.Graw Hill Education Pvt Ltd., New Delhi (2005), 16th Reprint (2013).
- 3. Braja M. Das, Advanced Soil Mechanics, Taylor and Francis, 3rd edition (2008).

Websites:

www.nptel.ac.in/courses/civilengineering/soilmechcnais/105103097/ www.google.co.in

Course Design and Delivery System (CDD):

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to –

- Understand the principles of learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Signature of HOD

COURSE SCHEDULE

Academic Year : 2021-22

Semester

Name of the Program: B.Tech Civil Engineering Year: III

: I

Course/Subject: Geotechnical Engineering

Name of the Faculty: Dr. C.Lavanya

Designation: Professor

The Schedule for the whole Course / Subject is:

	Duration (Date)		Total No.	
S. No.	Description	From	То	Of Periods
1.	UNIT I: Introduction & Index Properties of Soils	16-08-2021	09-09-2021	12
2.	UNIT II: Permeability & Seepage through soils	13-09-2021	04-10-2021	10
3.	UNIT III: Stress distribution in soils	07-10-2021	01-11-2021	11
4.	UNIT IV: Compaction & Consolidation	03-11-2021	22-11-2021	9
5.	UNIT V: Shear strength of soils	24-11-2021	08-12-2021	9

Total No. of Instructional periods available for the course: 51 Hours / Periods

Course Code: GR18A3002

Section: A

Dept.: Civil Engineering

COURSE SCHEDULE

	Academic Year	: 2021-22		
	Semester	: I		
	Name of the Program: B.Tec	h Civil Engineering	Year: III	Section: B
	Course/Subject: Geotechnica	al Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.Lavanya			Dept.: Civil Engineering	
	Designation: Professor			

The Schedule for the whole Course / Subject is:

		Duration	Total No.	
S. No.	Description	From	То	Of Periods
1.	UNIT I: Introduction & Index Properties of Soils	16-08-2021	14-09-2021	12
2.	UNIT II: Permeability & Seepage through soils	17-09-2021	08-10-2021	10
3.	UNIT III: Stress distribution in soils	11-10-2021	05-11-2021	11
4.	UNIT IV: Compaction & Consolidation	08-11-2021	19-11-2021	9
5.	UNIT V: Shear strength of soils	22-11-2021	07-12-2021	9

Total No. of Instructional periods available for the course: 51 Hours / Periods

SCHEDULE OF INSTRUCTIONS **COURSE PLAN**

Academic Year

Semester

: 2021-22 : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Geotechnical Engineering

Name of the Faculty: Dr. C.Lavanya

Designation: Professor

Course Code: GR18A3002

Dept.: Civil Engineering

Lesson No.	Unit No.	Date	No. of Periods	Topics	Course Objectives & Outcomes	References Text Book Page No.
1		16-08-2021	1	Scope of soil mechanics	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.1- 2
2		18-08-2021	1	Types of soils	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.4- 6
3		19-08-2021	1	Soil formation	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.94-98
4		23-08-2021	1	Basic Definitions and Relationships	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.98, 10
5	I	25-08-2021	1	Soil as three-phase system	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.10-14
6		26-08-2021	1	Determination of moisture content by oven dry method, pycnometer and sand bath method	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.15-20
7		30-08-2021	1	Specific gravity by pycnometer method, Unit	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.45-46

			weight of soil by Core-cutter and Sand-replacement method		
8	01-09-2021	1	Consistency limits, Consistency indices	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.25
9	02-09-2021	1	Grain size analysis, Indian standard soil classification system	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.25-26
10	06-09-2021	1	Plasticity of soil	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.27-32
11	08-09-2021	1	Problems	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.34-39
12	09-09-2021	1	Problems	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.40-42
13	13-09-2021	1	Darcy's law, validity of Darcy's law	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.137
14	15-09-2021	1	Determination of permeability by constant-head method and falling- head method	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.133-134
15	16-09-2021	1	Field method by pumping- out test	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.138-139
16	20-09-2021	1	Permeability of stratified soils	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.145-146
17	22-09-2021	1	Factors affecting permeability of soil	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.140-141
18	23-09-2021	1	Seepage Analysis, Characteristics of flow nets	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.147-148
19	27-09-2021	1	Effective stress principle and effect of water table	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.142-144
20	29-09-2021	1	Soils saturated by capillary action, quick sand condition	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.173-174

21		30-09-2021	1	Problems	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.149-152
22		04-10-2021	1	Problems	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.148
23		07-10-2021	1	Theory of compaction, laboratory determination of OMC & MDD	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.200
24		11-10-2021	1	Factors affecting compaction	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.200-202
25		13-10-2021	1	Compaction in field and compaction control	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.202-208
26		14-10-2021	1	Stresses due to point load, line load, strip load, uniformly loaded circular area, rectangular loaded area	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.202, 203
27		21-10-2021	1	Pressure bulb and Isobars	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.212, 213
28		25-10-2021	1	Boussinesq's equation	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.210-211
29		27-10-2021	1	Theory of Newmark's Influence Chart	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.
30		27-10-2021	1	Equivalent point load method	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.
31		28-10-2021	1	Two to one method	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.208-210
32		01-11-2021	1	Problems	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.220
33		01-11-2021	1	Problems	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.220
34	IV	03-11-2021	1	Consolidation of Soil - Introduction	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.106

35		08-11-2021	1	Comparison between compaction and consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.106-107
36		08-11-2021	1	Initial, primary & secondary consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.109-113
37		10-11-2021	1	Spring analogy for primary consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.113-119
38		11-11-2021	1	Terzaghi's theory of consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.119-120
39		15-11-2021	1	Interpretation of consolidation test results	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.221-222
40		17-11-2021	1	Consolidation settlement and secondary consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.224- 227&237
41		18-11-2021	1	Problems	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.240-241
42		22-11-2021	1	Problems	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.226,230-233
43		24-11-2021	1	Shear Strength - Mohr circle and its characteristics	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.287
44		25-11-2021	1	principal planes, relation between major and minor principal stresses	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.287-289
45	V	25-11-2021	1	Mohr-Coulomb theory	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.290-296
46		29-11-2021	1	Direct shear test and it merits	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.296-302
47		29-11-2021	1	Tri-axial compression test and its behaviour of UU, CU and CD	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.311-313
48		01-12-2021	1	Unconfined compression test and vane shear test	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.303-308

49	02-12-2021	1	Computation of effective shear strength parameters	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.314
50	06-12-2021	1	Problems	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.314
51	08-12-2021	1	Problems	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.

Signature of HOD

Signature of faculty

Note:

Ensure that all topics specified in the course are mentioned.
 Additional topics covered, if any, may also be specified in bold
 Mention the corresponding course objective and outcome numbers against each topic.

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2021-22

Semester

: I

Name of the Program: B.Tech Civil Engineering Year: III

Course/Subject: Geotechnical Engineering

Name of the Faculty: Dr. C.Lavanya

Designation: Professor

Section: B

Course Code: GR18A3002

Dept.: Civil Engineering

Lesson No.	Unit No.	Date	No. of Periods	Topics	Course Objectives & Outcomes	References Text Book Page No.		
1		16-08-2021	1	Scope of soil mechanics	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.1-2		
2		17-08-2021	1	Types of soils	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.4-6		
3		20-08-2021	1	Soil formation	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.94- 98		
4		23-08-2021	1	Basic Definitions and Relationships	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.98, 10		
5		I	I	24-08-2021	1	Soil as three- phase system	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.10- 14
6		27-08-2021	1	Determination of moisture content by oven dry method, pycnometer and sand bath method	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.15- 20		

7		30-08-2021	1	Specific gravity by pycnometer method, Unit weight of soil by Core-cutter and Sand- replacement method	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.45- 46
8		03-09-2021	1	Consistency limits, Consistency indices	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.25
9		06-09-2021	1	Grain size analysis, Indian standard soil classification system	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.25- 26
10		07-09-2021	1	Plasticity of soil	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.27- 32
11		13-09-2021	1	Problems	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.34- 39&40-42
12		14-09-2021	1	Problems	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.79- 83
13		17-09-2021	1	Darcy's law, validity of Darcy's law	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.137
14		20-09-2021	1	Determination of permeability by constant-head method and falling-head method	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.133-134
15		21-09-2021	1	Field method by pumping- out test	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.138-139
16		24-09-2021	1	Permeability of stratified soils	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.145-146
17		27-09-2021	1	Factors affecting permeability of soil	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.140-141

18		28-09-2021	1	Seepage Analysis, Characteristics of flow nets	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.147-148
19		01-10-2021	1	Effective stress principle and effect of water table	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.142-144
20		04-10-2021	1	Soils saturated by capillary action, quick sand condition	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.173-174
21		05-10-2021	1	Problems	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.149-152
22		08-10-2021	1	Problems	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.175-178
23		11-10-2021	1	Theory of compaction, laboratory determination of OMC & MDD	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.200
24		12-10-2021	1	Factors affecting compaction	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.200-202
25		22-10-2021	1	Compaction in field and compaction control	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.202-208
26		25-10-2021	1	Stresses due to point load, line load, strip load, uniformly loaded circular area, rectangular loaded area	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.202, 203
27		26-10-2021	1	Pressure bulb and Isobars	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.212, 213
28		26-10-2021	1	Boussinesq's equation	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.210-211
29		29-10-2021	1	Theory of Newmark's	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.

				Influence Chart		
30		01-11-2021	1	Equivalent point load method	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.
31		01-11-2021	1	Two to one method	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.208-210
32		02-11-2021	1	Problems	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.220
33		05-11-2021	1	Problems	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.220
34	-	08-11-2021	1	Consolidation of Soil - Introduction	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.106
35		09-11-2021	1	Comparison between compaction and consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.106-107&109- 113
36		12-11-2021	1	Initial, primary & secondary consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.113-116
37		12-11-2021	1	Spring analogy for primary consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.117-119&119- 120
38	IV	15-11-2021	1	Terzaghi's theory of consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.221
39		16-11-2021	1	Interpretation of consolidation test results	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.221-222&224- 227
40		16-11-2021	1	Consolidation settlement and secondary consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.237
41		19-11-2021	1	Problems	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.240-241
42		19-11-2021	1	Problems	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.226&230-233

43			22-11-2021	1	Shear Strength - Mohr circle and its characteristics	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.287			
44				23-11-2021	1	principal planes, relation between major and minor principal stresses	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.287-289		
45		26-11-2021	1	Mohr-Coulomb theory	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.290-296				
46		29-11-2021	1	Direct shear test and it merits	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.296-302				
47	V	30-11-2021	1	Tri-axial compression test and its behaviour of UU, CU and CD	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.311-313				
48						30-11-2021	1	Unconfined compression test and vane shear test	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.303-308
49		03-12-2021	1	Computation of effective shear strength parameters	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.314				
50		06-12-2021 1 Pr	Problems	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.314					
51		07-12-2021	1	Problems	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.				

Signature of HOD

Signature of faculty

Note:

Ensure that all topics specified in the course are mentioned.
 Additional topics covered, if any, may also be specified in bold
 Mention the corresponding course objective and outcome numbers against each topic.

SCHEDULE OF INSTRUCTIONS **UNIT PLAN**

Academic Year

Semester

: 2021-22 : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Geotechnical Engineering

Name of the Faculty: Dr. C.Lavanya

Designation: Professor

Course Code: GR18A3002

Dept.: Civil Engineering

Lesson No.	Uni t No.	Date	No. of Perio ds	Topics	Course Objectives & Outcomes	References Text Book Page No.
1		16-08-2021	1	Scope of soil mechanics	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.1- 2
2		18-08-2021	1	Types of soils	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.4- 6
3		19-08-2021	1	Soil formation	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.94-98
4	_	23-08-2021	1	Basic Definitions and Relationships	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.98, 10
5	I	25-08-2021	1	Soil as three-phase system	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.10-14
6		26-08-2021	1	Determination of moisture content by oven dry method, pycnometer and sand bath method	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.15-20
7		30-08-2021	1	Specific gravity by pycnometer method, Unit weight of soil by Core-cutter and Sand-	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.45-46

			replacement method		
8	01-09-2021	1	Consistency limits, Consistency indices	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.25
9	02-09-2021	1	Grain size analysis, Indian standard soil classification system	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.25-26
10	06-09-2021	1	Plasticity of soil	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.27-32
11	08-09-2021	1	Problems	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.34-39
12	09-09-2021	1	Problems	COb-1 CO-1	Gopal Ranjan & ASR Rao, pp.40-42

Signature of HOD

Signature of faculty

Note:

- Ensure that all topics specified in the course are mentioned.
 Additional topics covered, if any, may also be specified in bold
 Mention the corresponding course objective and outcome numbers against each topic.

LESSON PLAN

Academic Year : 2021-22						
Semester : I						
Name of the Program: B.Tech Civil Engineering Year: III	Section: A					
Course/Subject: Geotechnical Engineering	Course Code: GR18A3002					
Name of the Faculty: Dr. C.Lavanya	Dept.: Civil Engineering					
Designation: Professor						
Lesson No: <u>1</u> Duration of Lesson: <u>1hr</u> Lesson Title: <u>Scope of soil mechanics</u>						
On completion of this lesson the student shall be able to:						
 Express about soil and soil mechanics Discuss the importance of Geotechnical Engineering in Civil Engineering 						
TEACHING AIDS: White board, markerTEACHING POINTS:						
 Soil Soil mechanics Civil Engineering Geotechnical Engineering 						

Assignment / Questions:

1. .Explain about importance of soil mechanics in Civil Engineering. (Cob -1, CO-1)

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A		
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002		
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering		
Designation: Professor					
Lesson No: <u>2</u> Lesson Title: <u>Types of soils</u>	Duration of Lesson:	<u>1hr</u>			
INSTRUCTIONAL/LESSON	OBJECTIVES:				
On completion of this lesson t	he student shall be ab	le to:			
 Discuss about formation of soil Distinguish between residual soils and transported soils 					
TEACHING AIDS : W TEACHING POINTS :	hite board, marker				
 Soil formation Weathering of soils Residual soils Transported soils 					
Assignment / Questions:		d sails			

1. Distinguish between residual soils and transported soils

2. Explain about soil formation.

(Cob -1, CO-1)

LESSON PLAN

Academic Year : 2021-22					
Semester : I					
Name of the Program: B.Tech Civil Engineer	ing Year: III	Section: A			
Course/Subject: Geotechnical Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.Lavanya		Dept.: Civil Engineering			
Designation: Professor					
Lesson No: <u>3</u> Duration of Lesson Title: <u>Soil formation</u>	son: <u>1hr</u>				
INSTRUCTIONAL/LESSON OBJECTIVES	<u>.</u>				
On completion of this lesson the student shall	be able to:				
 Discuss about mode of arrangement of soil particles Express structure of clay minerals Distinguish between different clay minerals 					
TEACHING AIDS : White board, mark TEACHING POINTS :	ter				
 Soil structure Flocculated clay structure Dispersed clay structure Structure of clay minerals Kaolinite Montmorillonite Illite 					
Assignment / Questions: 1. Explain clay mineralogy with clay minerals	5				

(Cob -1, CO-1)

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A			
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.La	vanya		Dept.: Civil Engineering			
Designation: Professor						
Lesson No: <u>4</u>	Duration of Lesson:	<u>1hr</u>				
Lesson Title: Basic Definitions	and Relationships,					
INSTRUCTIONAL/LESSON	OBJECTIVES:					
On completion of this lesson the	he student shall be ab	le to:				
1. Explain about adsorbed wa	1. Explain about adsorbed water					
TEACHING AIDS : WI TEACHING POINTS :	nite board, marker					
Adsorbed water						
Clay crystal						
 Hydrogen bonding Water molecula 						
• water morecule						

Assignment / Questions:

Discuss about adsorbed water.

(Cob -1, CO-1)

LESSON PLAN

Academic Year : 2	021-22				
Semester	: I				
Name of the Program: B.Tech Ci	vil Engineering	Year: III	Section: A		
Course/Subject: Geotechnical Er	igineering		Course Code: GR18A3002		
Name of the Faculty: Dr. C.Lavar	nya		Dept.: Civil Engineering		
Designation: Professor					
Lesson No: <u>5</u> Dur	ration of Lesson:	<u>1hr</u>			
Lesson Title: Soil as three-phase	<u>system</u>				
INSTRUCTIONAL/LESSON OF	BJECTIVES:				
On completion of this lesson the student shall be able to:					
 Interpret about Mass-volume relationship. Distinguish between various definitions / parameters involved in soil mechanics TEACHING AIDS : White board, marker TEACHING POINTS : 					
Mass- volume relationships					
 Phase diagram Saturated soils 					
Dry soils					
Partially saturated soils					
• Density					

Assignment / Questions:

1. Derive the relation between dry density and wet density. (Cob -1, CO-1)

LESSON PLAN

Academic Year :	2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A			
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.Lav	vanya		Dept.: Civil Engineering			
Designation: Professor						
Lesson No: <u>6</u>	Duration of Lesson:	<u>1hr</u>				
Lesson Title: <u>Determination of</u> method	moisture content b	y oven dry method, py	cnometer and sand bath			
INSTRUCTIONAL/LESSON	OBJECTIVES:					
On completion of this lesson th	e student shall be ab	le to:				
1. Explain about Relative densi	ty					
2. Classify the soils based on R	elative density					
TEACHING AIDS : Wh TEACHING POINTS :	ite board, marker					
Relative density						
 Minimum Void ratio Maximum void ratio 	Minimum Void ratio Maximum void ratio					
Density						
Classification of coar	se grained soils					
Assignment / Questions: 1.Discuss about minimum and 2. Explain IS classification of s	maximum void ratio					
(Cob -1, CO-1)						

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A			
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.L.	avanya		Dept.: Civil Engineering			
Designation: Professor						
Lesson No: <u>8</u>	Duration of Lesson:	<u>1hr</u>				
Lesson Title: Index properties	s of soils					
INSTRUCTIONAL/LESSON	OBJECTIVES:					
On completion of this lesson the student shall be able to:						
1. Review various index properties of soils						
2. Describe the soils based on Index properties of soils						
TEACHING AIDS : W TEACHING POINTS :	hite board, marker					
Index properties						
• Describe the soils						
 Soil aggregate properties 						
	0100					
Assignment / Questions:						
1. Discuss consistency limits and indices.						

(Cob -1, CO-1)

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A			
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.La	ivanya		Dept.: Civil Engineering			
Designation: Professor						
Lesson No: <u>9</u> Lesson Title: <u>Grain size analy</u> :	Duration of Lesson: <u>]</u>	<u>1hr</u>				
INSTRUCTIONAL/LESSON	OBJECTIVES :					
On completion of this lesson the	he student shall be ab	le to:				
 Assess grain size and grain Find the percent finer through 	 Assess grain size and grain shape Find the percent finer through sieve analysis 					
TEACHING AIDS : WI TEACHING POINTS :	nite board, marker					
Describe the soilsSoil grain sizeSoil grain shape						

Assignment / Questions:

1. Explain sieve analysis test procedure. (Cob -1, CO-1)

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22						
Semester	: I						
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A				
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002				
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering				
Designation: Professor							
Lesson No: <u>10</u> Lesson Title: <u>Sieve and Hydro</u>	Duration of Lesson: ometer methods	<u>1hr</u>					
INSTRUCTIONAL/LESSON	OBJECTIVES:						
On completion of this lesson t	On completion of this lesson the student shall be able to:						
 Assess grain size distribution Find the percent finer through sieve analysis and hydrometer analysis Illustrate between dry and wet analysis TEACHING AIDS : White board, marker 							
TEACHING POINTS :							
 Grain size distribution Set of sieves Sieve analysis or dry Hydrometer analysis Corrections applied 	on y analysis s or wet analysis to hydrometer readin	gs					

Assignment / Questions:

1. Discuss about sieve analysis by using hydrometer test.

(Cob -1, CO-1)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	n Civil Engineering Y	Year: III	Section: A			
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.L	avanya		Dept.: Civil Engineering			
Designation: Professor						
Lesson No: <u>11</u> Lesson Title: <u>Consistency lim</u>	Duration of Lesson: <u>1h</u> <u>iits</u>	<u>nr</u>				
INSTRUCTIONAL/LESSON	<u>NOBJECTIVES:</u>					
On completion of this lesson	On completion of this lesson the student shall be able to:					
 Find consistency of clayey Compute consistency limit Interpret results of consistency 	soils s ncy limits					
TEACHING AIDS: WTEACHING POINTS:	hite board, marker					
 Consistency limits Boundary water con Liquid Limit Plastic Limit Shrinkage Limit 	or Atterberg Limits ntents					

Assignment / Questions:

1.Discuss about Consistency limits and its importance.

(Cob -1, CO-1)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A		
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002		
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering		
Designation: Professor					
Lesson No: <u>12</u> Lesson Title: <u>Consistency ind</u>	Duration of Lesson: ices	<u>1hr</u>			
INSTRUCTIONAL/LESSON	OBJECTIVES:				
On completion of this lesson the student shall be able to:					
 Find consistency indices of clayey soils Compute consistency indices Interpret results of consistency indices 					
TEACHING AIDS : WI TEACHING POINTS :	hite board, marker				
Consistency indices					
Liquidity index Plasticity index					
Consistency index					
• Flow index	• Flow index				
Toughness index					

Assignment / Questions:

1. Interpret the results of consistency indices with varied results.

(Cob -1, CO-1)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A			
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.L.	avanya		Dept.: Civil Engineering			
Designation: Professor						
Lesson No: <u>13</u> Lesson Title: <u>I.S. Classification</u>	Duration of Lesson:	<u>1hr</u>				
INSTRUCTIONAL/LESSON	OBJECTIVES:					
On completion of this lesson t	On completion of this lesson the student shall be able to:					
 Assess classification of soil Predict coarse grained soils Find the type of soil 	s and fine grained soils	S				
TEACHING AIDS: WTEACHING POINTS:	hite board, marker					
 I.S classification of Types of soils Division of soil frac Well graded soils Poorly graded soils 	soils tions					

Plasticity index

Assignment / Questions:

1. Assess the standard procedure for classification of soils. (Cob -1, CO-1)

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering Year: III	Section: A				
Course/Subject: Geotechnica	lEngineering	Course Code: GR18A3002				
Name of the Faculty: Dr. C.La	avanya	Dept.: Civil Engineering				
Designation: Professor						
Lesson No: <u>14</u> Lesson Title: <u>Plasticity Chart</u>	Duration of Lesson: <u>1hr</u>					
INSTRUCTIONAL/LESSON OBJECTIVES:						
On completion of this lesson the student shall be able to:						
 Interpret and classify the soils using plasticity chart Distinguish between silt and clay soils 						
TEACHING AIDS : W TEACHING POINTS :	hite board, marker					
 Plasticity chart Classification of silt A-line Liquid limit Plasticity index Low medium and h 	t and clay					

Assignment / Questions:

1.Interpret and classify the soils using plasticity chart for fine grained soils. (Cob -1, CO-1)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET - 1

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical Engineering			Course Code: GR18A3002
Name of the Faculty: Dr. C.Lavanya			Dept.: Civil Engineering
Designation: Professor			

This Tutorial corresponds to Unit No. - I & Lesson

Q1. Indicate and derive the relation between degree of saturation, void ratio, water content and specific gravity of solids.

Q2. A soil has bulk density of 20.1kN/m³ and water content of 15%. Estimate the water content if the soil partially dries to a density of 19.4kN/m³ and the void ratio remains unchanged.

Q3. The liquid limit and plastic limit of a soil are 75% and 33% respectively. Compute plasticity index. The void ratio of the soil on oven-drying was found to be 0.63. Find the shrinkage limit. Assume grain specific gravity as 2.7.

Q4. Write short notes on the Methods of determination of Atterberg limits.

Objective Nos.: 1 Outcome Nos.: 1

Signature of HOD

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 1

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	n Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical Engineering			Course Code: GR18A3002
Name of the Faculty: Dr. C.L	avanya		Dept.: Civil Engineering
Designation: Professor			

This Assignment corresponds to Unit No. - I & Lesson

Q1. Describe Void ratio, Porosity, Degree of saturation, Water content, Dry density, Bulk density, and Submerged unit weight.

Q2. Indicate and derive the relation between bulk density, dry density and water content

Q3. Briefly demonstrate the procedure to determine the Liquid Limit of a soil.

Q4. A soil has a plastic limit of 25% and a plasticity index of 30. If the natural water content of the soil is 34%, Compute liquidity index and its consistency index? How do you illustrate the consistency?

Objective Nos.: 1 Outcome Nos.: 1

Signature of HOD

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS **UNIT PLAN**

Academic Year : 2021-22

Semester

: I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Geotechnical Engineering

Name of the Faculty: Dr. C.Lavanya

Designation: Professor

Course Code: GR18A3002

Dept.: Civil Engineering

Lesson No.	Unit No.	Date	No. of Periods	Topics	Course Objectives & Outcomes	References Text Book Page No.
1		13-09-2021	1	Darcy's law, validity of Darcy's law	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.137
2		15-09-2021	1	Determination of permeability by constant-head method and falling- head method	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.133-134
3		16-09-2021	1	Field method by pumping- out test	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.138-139
4	II	20-09-2021	1	Permeability of stratified soils	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.145-146
5		22-09-2021	1	Factors affecting permeability of soil	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.140-141
6		23-09-2021	1	Seepage Analysis, Characteristics of flow nets	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.147-148
7		27-09-2021	1	Effective stress principle and effect of water table	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.142-144
8		29-09-2021	1	Soils saturated by capillary action,	COb-2 CO-2	Gopal Ranjan & ASR Rao,

			quick sand condition		pp.173-174
9	30-09-2021	1	Problems	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.149-152
10	04-10-2021	1	Problems	COb-2 CO-2	Gopal Ranjan & ASR Rao, pp.148

Signature of HOD

Signature of faculty

Note: 1. Ensure that all topics specified in the course are mentioned.

Additional topics covered, if any, may also be specified in bold
 Mention the corresponding course objective and out come numbers against each topic.

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering Year: III	Section: A				
Course/Subject: Geotechnical	Engineering	Course Code: GR18A3002				
Name of the Faculty: Dr. C.La	wanya	Dept.: Civil Engineering				
Designation: Professor						
Lesson No:1Duration of Lesson:1hrLesson Title:Permeability						
INSTRUCTIONAL/LESSON OBJECTIVES:						
On completion of this lesson the student shall be able to:						
 Assess the coefficient of Use of coefficient of period 	of permeability for various soils ermeability					
TEACHING AIDS: White board, markerTEACHING POINTS:						
 Range of Coefficien Type of soils Use of Coefficient of 	t of permeability f permeability					

Assignment / Questions:

1. Assess the importance of coefficient of permeability for soils. (Cob -2, CO-2)

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: B.Tech	Civil Engineering Year: III	Section: A			
Course/Subject: Geotechnica	Engineering	Course Code: GR18A3002			
Name of the Faculty: Dr. C.La	avanya	Dept.: Civil Engineering			
Designation: Professor					
Lesson No: <u>2</u> Duration of Lesson: <u>1hr</u> Lesson Title: <u>Capillary rise</u> <u>INSTRUCTIONAL/LESSON OBJECTIVES:</u> On completion of this lesson the student shall be able to: 1. Apply knowledge of capillary rise in water table 2. Compute height of capillary rise					
TEACHING AIDS: White board, markerTEACHING POINTS:					
 Capillary water Capillary pressure Hydrostatic pressure Capillary rise 	2				

Assignment / Questions:

1. Discuss the importance of capillary rise in soils. (Cob -2, CO-2)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A			
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering			
Designation: Professor						
Lesson No: 3 Lesson Title: <u>Darcy's law</u>	Lesson No: 3 Duration of Lesson: <u>1hr</u> Lesson Title: <u>Darcy's law</u>					
INSTRUCTIONAL/LESSON OBJECTIVES:						
On completion of this lesson the student shall be able to:						
 Find the coefficient of permeability using Darcy's Law Illustrate the experiment conducted on pure sand by Darcy. 						
TEACHING AIDS: White board, markerTEACHING POINTS:						
• Flow of water						
Coefficient of permeability						
Pressure head and elevation head						
• Flow per unit time						
Hydraulic gradient						

Assignment / Questions:

1. Analyse the coefficient of permeability using Darcy's Law. (Cob -2, CO-2)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22					
Semester : I					
Name of the Program: B.Tech Civil Engineering Year: III	Section: A				
Course/Subject: Geotechnical Engineering	Course Code: GR18A3002				
Name of the Faculty: Dr. C.Lavanya	Dept.: Civil Engineering				
Designation: Professor					
Lesson No: 4 Duration of Lesson: <u>1hr</u> Lesson Title: Factors affecting permeability INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to: 1. Relate the factors effecting permeability 2. Interpret type of soils and its behavior in terms of permeability					
TEACHING AIDS : White board, marker					
 Permeability Factors effecting permeability Void ratio Particle size Degree of saturation Adsorbed water Stratified layers 					

Assignment / Questions:

1. Explain the factors effecting permeability. (Cob -2, CO-2)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22						
Semester : I						
Name of the Program: B.Tech Civil Enginee	ering Year: III	Section: A				
Course/Subject: Geotechnical Engineering		Course Code: GR18A3002				
Name of the Faculty: Dr. C.Lavanya		Dept.: Civil Engineering				
Designation: Professor						
Lesson No: 5 Duration of Lesson: <u>1hr</u> Lesson Title: Laboratory determination of coefficient of permeability INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to:						
 Calculate coefficient of permeability Demonstrate laboratory determination 	for various soils n of coefficient of p	permeability				
TEACHING AIDS : White board, matrix TEACHING POINTS :	rker					

- Range of Coefficient of permeability
- Type of soils
- Constant head test
- Variable head test or falling head test

Assignment / Questions:

1. Explain the laboratory procedure for determination of coefficient of permeability. (Cob -2, CO-2)

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A			
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering			
Designation: Professor						
Lesson No: <u>6</u> Lesson Title: Permeability of la	Duration of Lesson:	<u>1hr</u>				
INSTRUCTIONAL/LESSON OBJECTIVES:						
On completion of this lesson the student shall be able to:						
 Assess permeability Find the permeability for la Illustrate between horizonta 	yered soils Il and vertical permea	bility				
TEACHING AIDS: WITEACHING POINTS:	hite board, marker					
 Permeability Factors effecting per Horizontal flow Vertical flow 	rmeability					

• Average flow

Assignment / Questions:

1. Differentiate between horizontal and vertical permeability for layered soils. (Cob -2, CO-2)

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	n Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.L.	avanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: 7 Lesson Title: <u>In-situ permeab</u>	Duration of Lesson: ility tests (pumping of	<u>1hr</u> ut tests)	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson	the student shall be ab	ble to:	
 Calculate field coeffic Find in-situ coefficien 	ient of permeability for c	or various flows confined and unconfine	d flow
TEACHING AIDS : W TEACHING POINTS :	hite board, marker		
Coefficient of perm	eability		
 Confined pumping (Unconfined pumping (out test		
	0		

Assignment / Questions:

1.Calculate field coefficient of permeability for various flows. (Cob -2, CO-2)

LESSON PLAN

Academic Year : 2	2021-22	
Semester	: I	
Name of the Program: B.Tech C	ivil Engineering Year: III	Section: A
Course/Subject: Geotechnical E	ngineering	Course Code: GR18A3002
Name of the Faculty: Dr. C.Lava	anya	Dept.: Civil Engineering
Designation: Professor		
Lesson No: <u>8</u> Du Lesson Title: <u>Seepage through se</u>	aration of Lesson: <u>1hr</u> pils	
INSTRUCTIONAL/LESSON O	BJECTIVES:	
On completion of this lesson the	student shall be able to:	
 Illustrate seepage of wate Assess Laplace's equation 	er through a soil specimen n for two dimensional flow	
TEACHING AIDS: WhitTEACHING POINTS:	e board, marker	
 Seepage through water Laplace's equation Seepage analysis 		

Assignment / Questions:

1.Assess Laplace's equation for two dimensional flow for seepage of soils. (Cob -2, CO-2)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	n Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.L.		Dept.: Civil Engineering	
Designation: Professor			
Lesson No: <u>9</u> Lesson Title: <u>Total, neutral ar</u>	Duration of Lesson:	<u>1hr</u>	
INSTRUCTIONAL/LESSON	OBJECTIVES:		

On completion of this lesson the student shall be able to:

1. Find effective stress, total stress and pore water pressure for the soil strata at various depths

2. Assess the concept of effective stress, total stress and neutral stress

3. Interpret results of effective stress and total stress at various depths

TEACHING AIDS : White board, marker TEACHING POINTS :

- Effective stress
 - Effective stres
 - Total stress
 - Neutral stress
 - Thickness of layers
 - Density of soil
 - Water table
 - Capillary fringe

Assignment / Questions:

1. Interpret results of effective stress, neutral stress and total stress at various depths. (Cob -2, CO-2)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A			
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering			
Designation: Professor						
Lesson No: <u>10</u> Lesson Title: <u>Quick sand conc</u>	Duration of Lesson: lition	<u>1hr</u>				
INSTRUCTIONAL/LESSON OBJECTIVES:						
On completion of this lesson t	he student shall be ab	ble to:				
1. Assess the concept of quick	sand condition					
TEACHING AIDS : WI TEACHING POINTS :	hite board, marker					
Quick sand conditio	n					
Critical hydraulic gr	adient					
• Effective stresses						

Assignment / Questions:

1. Write short notes on quick sand condition. (Cob -2, CO-2)

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: <u>12</u> Lesson Title: Flow nets	Duration of Lesson:	<u>1hr</u>	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson t	he student shall be ab	le to:	
 Assess the concept of flow Use flow nets Illustrate the flownets 	nets		
TEACHING AIDS: WITEACHING POINTS:	hite board, marker		
Flow netFlow line			

- Equipotential line
- Flow channel
- Field

Assignment / Questions:

1. Assess the characteristics and uses of flow nets.

(Cob -2, CO-2)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.L	avanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: <u>13</u> Lesson Title: <u>Characteristics</u> a	Duration of Lesson: and Uses	<u>1hr</u>	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson	the student shall be ab	ole to:	
1. Assess the characterist	tics of flow nets		
 Calculate quantity of s 	seepage through flow	nets	
TEACHING AIDS : W TEACHING POINTS :	hite board, marker		
Uses and characteri	stics of flow nets		
Quantity of seepage)		
Seepage pressure			
Hydrostatic pressure	e		

• Exit gradient

Assignment / Questions:

1. Assess the characteristics and uses of flow nets. (Cob -2, CO-2)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET - 2

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering
Designation: Professor			

This Tutorial corresponds to Unit No. -II & Lesson

Q1. Illustrate the difference between constant head and variable head permeameters.

Q2. Calculate the coefficient of permeability for a uniform sand where a sieve analysis indicates that the D_{10} size is 0.12mm.

Q3. The discharge of water collected from a constant head permeameter in a period of 15minutes is 500ml. The internal diameter of the permeameter is 5cm and the measured difference in head between two gauging points 15cm vertically apart is 40cm. Calculate the coefficient of permeability.

Q4. Write short notes on Flow nets and its characteristics.

Objective Nos.: 2 Outcome Nos.: 2

Signature of HOD

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 2

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tec	h Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical Engineering			Course Code: GR18A3002
Name of the Faculty: Dr. C.L	Lavanya		Dept.: Civil Engineering

Designation: Professor

This Assignment corresponds to Unit No. - II & Lesson

Q1. Relate the various parameters that affect the permeability of soil in the field?

Q2. A horizontal stratified soil deposit consists of three layers each uniform in itself. The permeability's of these layers are 8×10^{-4} cm/s, 52×10^{-4} cm/s, and 6×10^{-4} cm/s, and their thicknesses are 7m, 3m and 10m respectively. Find the effective average permeability of the deposit in the horizontal and vertical directions.

Q3. Write short notes on neutral and effective pressure. What is the role of effective stress in soil mechanics?

Q4. A saturated sand layer over a clay stratum is 5m in depth. The water is 1.5m below ground level. If the bulk density of saturated sand is 17.66kN/m³, calculate the effective and neutral pressure on the top of the clay layer.

Objective Nos.: 2 Outcome Nos.: 2

Signature of HOD

SCHEDULE OF INSTRUCTIONS **UNIT PLAN**

Academic Year : 2021-22

Semester

: I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Geotechnical Engineering

Name of the Faculty: Dr. C.Lavanya

Designation: Professor

Course Code: GR18A3002

Dept.: Civil Engineering

Lesson No.	Unit No.	Date	No. of Perio ds	Topics	Course Objectives & Outcomes	References Text Book Page No.
1		07-10- 2021	1	Theory of compaction, laboratory determination of OMC & MDD	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.200
2		11-10- 2021	1	Factors affecting compaction	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.200-202
3		13-10- 2021	1	Compaction in field and compaction control	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.202-208
4	III	14-10- 2021	1	Stresses due to point load, line load, strip load, uniformly loaded circular area, rectangular loaded area	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.202, 203
5		21-10- 2021	1	Pressure bulb and Isobars	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.212, 213
6		25-10- 2021	1	Boussinesq's equation	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.210-211

6	27-10- 2021	1	Theory of Newmark's Influence Chart	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.
7	27-10- 2021	1	Equivalent point load method	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.
8	28-10- 2021	1	Two to one method	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.208-210
9	01-11- 2021	1	Problems	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.220
10	01-11- 2021	1	Problems	COb-3 CO-3	Gopal Ranjan & ASR Rao, pp.220

Signature of HOD

Signature of faculty

Note: 1. Ensure that all topics specified in the course are mentioned. 2. Additional topics covered, if any, may also be specified in bold 3. Mention the corresponding course objective and out come numbers against each topic.

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.L.	avanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: <u>1</u> Lesson Title: Compaction	Duration of Lesson:	<u>1hr</u>	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson	he student shall be ab	ble to:	
 Differentiate between compaction and consolidation Identify the importance of compressibility 			
TEACHING AIDS : White board, marker TEACHING POINTS : • Compressibility • Compaction • Consolidation • Methods of compaction			
Assignment / Questions: 1.Differentiate betwee	n compaction and cor	nsolidation.	(Cob -3, CO-3)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A	
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002	
Name of the Faculty: Dr. C.L	avanya		Dept.: Civil Engineering	
Designation: Professor				
Lesson No: $\underline{2}$ Lesson Title: Mechanism of c	Duration of Lesson: ompaction	<u>1hr</u>		
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson the student shall be able to:				
 Analyse the mechanism involved in compaction parameters Identify the maximum dry density and optimum moisture content 				
TEACHING AIDS: WTEACHING POINTS:	hite board, marker			
Compaction Maximum days does	:			
Maximum dry dens Optimum moisture	content			
 Type of compaction 	l			
Compactive energy				

Assignment / Questions: 1.Explain importance of MDD and OMC in compaction.

(Cob -3, CO-3)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	n Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.L	avanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: <u>3</u> Lesson Title: Factors affecting	Duration of Lesson: g compaction	<u>1hr</u>	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson	the student shall be ab	ole to:	
 Infer the factors affecting c Identify the compaction particular of the improvement 	ompaction rameters of compaction parame	eters	
TEACHING AIDS: WTEACHING POINTS:	hite board, marker		
 Compaction Method of compaction Water content Compactive effort Type of soil 			
Addition of admixtu	ıres		
Assignment / Questions:			

1. Infer the factors affecting compaction.(Cob -3, CO-3)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.La	vanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: <u>4</u> I Lesson Title: Effects of compa	Duration of Lesson: ction on soil propert	<u>1hr</u> ies	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson th	ne student shall be ab	ble to:	
 Infer the factors affecting co Identify the soils compacted Illustrate the improvement of 	ompaction on soil pro at dry or wet of opti f soil properties due	perties mum to compaction	
TEACHING AIDS : Wh TEACHING POINTS :	ite board, marker		
 Structure Permeability Compressibility Swelling Shrinkage Stress-strain behavio Pore water pressure 	r		

Assignment / Questions:

1. Explain about improvement of soil properties due to compaction. (Cob -3, CO-3)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical	l Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: <u>5</u> Lesson Title: Field compaction	Duration of Lesson: n Equipment	<u>1hr</u>	
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			
 Differentiate between various types of rollers Identify the equipment suitable based on type of soil Identify the equipment suitable based on type of soil and nature of project 			
TEACHING AIDS : WI TEACHING POINTS :	hite board, marker		
 Rammers Smooth wheel roller Sheep foot rollers Pneumatic rollers Vibratory rollers 	ſS		

Assignment / Questions:

1. Identify suitable field equipment for compaction control. (Cob -3, CO-3)

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.La	wanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: <u>6</u> Lesson Title: Compaction con	Duration of Lesson:	<u>1hr</u>	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson t	he student shall be ab	le to:	
 Analyse the degree of compaction achieved Differentiate between degree of compaction and relative compaction Identify the parameters for compaction control 			
TEACHING AIDS: White board, markerTEACHING POINTS:			
 Compaction control parameters In-situ dry density Moisture content Relative compaction Degree of compaction 			

Assignment / Questions:

1. Identify the suitable parameters for compaction control in field. (Cob -3, CO-3)

LESSON PLAN

Academic Year :	2021-22		
Semester	: I		
Name of the Program: B.Tech C	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical H	Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.Lav	anya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: 7 D Lesson Title: <u>Stress distribution</u>	uration of Lesson: <u>in soils</u>	<u>1hr</u>	
INSTRUCTIONAL/LESSON (DBJECTIVES:		
On completion of this lesson the	e student shall be ab	le to:	
 Analyse stress distribution in Calculate stresses at various p Identify stress distribution be 	soils points neath loaded areas		
TEACHING AIDS : Whi TEACHING POINTS :	te board, marker		
Stress distributionVertical stresses			
Stress distribution dia	grams		
Stresses due to point 1Stresses due to uniform	oad mly distributed load		

Assignment / Questions:

1. Analyse the stress distribution in soils. (Cob -3, CO-3)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: <u>8</u> Lesson Title: <u>Boussinesq's Th</u>	Duration of Lesson:	<u>1hr</u> 1 <u>1</u>	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson t	he student shall be ab	le to:	
 Analyse stress distribution i Calculate stresses at varying Identify stress distribution b TEACHING AIDS : WI 	n soils g depth and at radial d beneath loaded areas hite board, marker	istance	
TEACHING POINTS :			
 Vertical stress distri Isobar Pressure bulb Vertical stress distri Vertical stress distri 	bution diagrams bution on horizontal p bution on vertical plar	olane ne	

Assignment / Questions:

1. Analyse the stress distribution in soils. (Cob -3, CO-3)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A	
Course/Subject: Geotechnical	l Engineering		Course Code: GR18A3002	
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering	
Designation: Professor				
Lesson No: 9 Lesson Title: <u>Boussinesq's Th</u>	Lesson No: 9 Duration of Lesson: <u>1hr</u> Lesson Title: <u>Boussinesq's Theory – areas of different shapes</u>			
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				
 Analyse stress distribution in soils Calculate stresses at varying depth and at radial distance for different shapes Identify stress distribution beneath loaded areas 				
TEACHING AIDS: White board, markerTEACHING POINTS:				
Vertical stress distri	bution diagrams			
Stress distribution fe	or rectangular areas			
Stress distribution for	or circular areas			
Stress distribution for	or square footings			

Assignment / Questions: 1. Analyse the stress distribution in soils. (Cob -3, CO-3)

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A	
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002	
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering	
Designation: Professor				
Lesson No: <u>10</u> Lesson Title: <u>Variation of vert</u>	Duration of Lesson:	<u>1hr</u>		
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson t	he student shall be ab	le to:		
 Analyse stress distribution in soils Calculate stresses at varying depth and at radial distance Identify stress distribution beneath loaded areas 				
TEACHING AIDS : WI TEACHING POINTS :	hite board, marker			
 Vertical stress distribution diagrams Isobar Pressure bulb Vertical stress distribution on horizontal plane Vertical stress distribution on vertical plane 				
Assignment / Questions:				

1. Analyse stress distribution beneath loaded areas.

(Cob -3, CO-3)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22			
Semester : I			
Name of the Program: B.Tech Civil Engineering Year: III	Section: A		
Course/Subject: Geotechnical Engineering	Course Code: GR18A3002		
Name of the Faculty: Dr. C.Lavanya	Dept.: Civil Engineering		
Designation: Professor			
Lesson No:11Duration of Lesson:1hrLesson Title:Wester gaard's theory			
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			
 Analyse stress distribution in soils Calculate stresses at varying depth and at radial distance Identify stress distribution beneath loaded areas 			
TEACHING AIDS: White board, markerTEACHING POINTS:			
 Vertical stress distribution diagrams Vertical stress distribution on horizontal plane Vertical stress distribution on vertical plane 			

Assignment / Questions:

1. Analyse stress distribution beneath loaded areas. (Cob -3, CO-3)

LESSON PLAN

		- · ·	
Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	n Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.L	avanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: <u>12</u> Lesson Title: <u>Appropriate stre</u>	Duration of Lesson:	<u>1hr</u> ds	
INSTRUCTIONAL/LESSON	<u>IOBJECTIVES:</u>		
On completion of this lesson	the student shall be ab	ble to:	
 Analyse stress distribution Calculate stresses at varyin Identify stress distribution 	in soils g depth and at radial c beneath loaded areas	listance	
TEACHING AIDS : W TEACHING POINTS :	hite board, marker		
Equivalent point loaTwo to one method	ad method		

Assignment / Questions:

1. Analyse stress distribution beneath loaded areas. (Cob -3, CO-3)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.La	ıvanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: <u>13</u> Lesson Title: <u>Newmark's influ</u>	Duration of Lesson: <u>1</u> lence chart	<u>1hr</u>	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson t	he student shall be ab	le to:	
 Analyse Newmark's influen Calculate stresses at any point Identify various circles for in 	ice chart int inside or outside lo nfluence chart	baded area	
TEACHING AIDS : WI TEACHING POINTS :	nite board, marker		
 Newmark's influence No.of circles Loaded area Influence value 	e chart		

• Vertical stress

Assignment / Questions: 1. Analyse Newmark's influence chart in stress dsiribution. (Cob -3, CO-3)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET - 3

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	n Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical Engineering			Course Code: GR18A3002
Name of the Faculty: Dr. C.L	avanya		Dept.: Civil Engineering
Designation: Professor			

This Tutorial corresponds to Unit No. - III & Lesson

Q1. Analyse the concept of 'Pressure Bulb' in soils.

Q2. A line load of 100kN/metre run extends to a long distance. Determine the intensity of vertical stress at a point, 2 m below the surface and (*i*) directly under the line load, and (*ii*) at a distance of 2 m perpendicular to the line. Use Boussinesq's theory.

Q3. Analyse Boussinesq's theory for vertical stress at a point due to a load on the surface of an elastic medium.

Q4. A rectangular area 4 m \times 6 m carries a uniformly distributed load of 100kN/m² at the ground surface. Calculate vertical pressure at a depth of 6 m vertically below the centre and also below a corner of the loaded area.

Objective Nos.: 3 Outcome Nos.: 3

Signature of HOD

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 3

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tec	h Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnica	al Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.I	Lavanya		Dept.: Civil Engineering
Designation: Professor			

8

This Assignment corresponds to Unit No. - III & Lesson

Q1. Analyse Westergaad's theory for vertical stress at a point due to a load on the surface of an elastic medium.

Q2. A concentrated load of 22.5 kN acts on the surface of a homogeneous soil mass of large extent. Determine the stress intensity at a depth of 15 meters and (i) directly under the load, and (ii) at a horizontal distance of 7.5 metres. Use Boussinesq's equations.

Q3. Outline a brief critical note on 'Newmark's influence chart'.

Q4. A load 1000 kN acts as a point load at the surface of a soil mass. Calculate stress at a point 3 m below and 4 m away from the point of action of the load by Boussinesq's formula. Compare the value with the result from Westergaard's theory.

Objective Nos.: 3 Outcome Nos.: 3

Signature of HOD

SCHEDULE OF INSTRUCTIONS **UNIT PLAN**

Academic Year : 2021-22

Semester

: I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Geotechnical Engineering

Name of the Faculty: Dr. C.Lavanya

Dept.: Civil Engineering

Course Code: GR18A3002

Designation: Professor

Lesson No.	Unit No.	Date	No. of Peri ods	Topics	Course Objectives & Outcomes	References Text Book Page No.
1		03-11-2021	1	Consolidation of Soil - Introduction	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.106
2		08-11-2021	1	Comparison between compaction and consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.106-107
3		08-11-2021	1	Initial, primary & secondary consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.109-113
4		10-11-2021	1	Spring analogy for primary consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.113-119
5		11-11-2021	1	Terzaghi's theory of consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.119-120
6		15-11-2021	1	Interpretation of consolidation test results	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.221-222
7		17-11-2021	1	Consolidation settlement and secondary consolidation	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.224-227&237
8		18-11-2021	1	Problems	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.240-241

9	22-11-2021	1	Problems	COb-4 CO-4	Gopal Ranjan & ASR Rao, pp.226,230-233
SS					

Signature of HOD

Signature of faculty

Note: 1. Ensure that all topics specified in the course are mentioned.

Additional topics covered, if any, may also be specified in bold
 Mention the corresponding course objective and out come numbers against each topic.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A		
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002		
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering		
Designation: Professor					
Lesson No:1Duration of Lesson:1hrLesson Title:Consolidation					
INSTRUCTIONAL/LESSON OBJECTIVES:					
On completion of this lesson the student shall be able to:					
 Outline about total vertical deformation of a soil Classify various components of settlement Discriminate between primary consolidation settlement and secondary consolidation settlement. 					
TEACHING AIDS : WI TEACHING POINTS :	nite board, marker				

- Compressibility
- Consolidation
- Vertical deformation
- Primary consolidation
- Secondary consolidation

Assignment / Questions:

1. Outline about various settlements of total vertical deformation of soil. (Cob -4, CO-4)

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A			
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering			
Designation: Professor						
Lesson No: <u>2</u> Lesson Title: Computation of	Duration of Lesson: settlements	<u>1hr</u>				
INSTRUCTIONAL/LESSON	OBJECTIVES:					
On completion of this lesson t	On completion of this lesson the student shall be able to:					
 Outline about total settleme Classify various component 	nt s of settlement.					
TEACHING AIDS : WI TEACHING POINTS :	nite board, marker					
 Consolidation settles Coefficient of consol Coefficient of comp 	ment lidation ressibility					

Consolidation test

Assignment / Questions:

1. Classify various components of settlement. (Cob -4, CO-4)

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A			
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002			
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering			
Designation: Professor						
Lesson No: <u>3</u> Lesson Title: stress history of	Duration of Lesson:	<u>1hr</u>				
INSTRUCTIONAL/LESSON OBJECTIVES:						
On completion of this lesson the student shall be able to:						
 Outline about stress history of clayey soils Classify various stresses Distinguish between normally consolidated soils and under consolidated soils 						
TEACHING AIDS: White board, markerTEACHING POINTS:						
• Stress history of clay	ys					
Recompression curv	'e					
Preconsolidation stre	SS					
• OCK						

Assignment / Questions: 1. Outline about stress history of clay soils. (Cob -4, CO-4)

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.La	vanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: 4	Duration of Lesson: <u>1</u> olidation test	<u>lhr</u>	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson the	he student shall be abl	le to:	
 Analyse rate of settlement Determine coefficient of con Outline the points referring 	nsolidation to boundary conditior	18	
TEACHING AIDS : WI TEACHING POINTS :	nite board, marker		
 Consolidation settler Coefficient of conso Double drainage and Time taken for conso 	nent lidation l single drainage plidation		

Assignment / Questions: 1.Outline the laboratory procedure of consolidation test. (Cob -4, CO-4)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: B.Tech	n Civil Engineering	Year: III	Section: A		
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002		
Name of the Faculty: Dr. C.L.	avanya		Dept.: Civil Engineering		
Designation: Professor					
Lesson No: <u>5</u> Lesson Title: logarithm of tim	Duration of Lesson: ne fitting method, squ	<u>1hr</u> are root of time fitting 1	nethod		
INSTRUCTIONAL/LESSON	OBJECTIVES:				
On completion of this lesson	the student shall be at	ble to:			
 Analyse rate of settlement Determine coefficient of consolidation Outline the points referring to boundary conditions 					
TEACHING AIDS : W TEACHING POINTS :	hite board, marker				
 Consolidation settle Coefficient of conso Time taken for 90% 	ement olidation o consolidation				

• Time taken for 50% consolidation

Assignment / Questions: 1.Outline the laboratory procedure of consolidation test. (Cob -4, CO-4)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: B.Tech	Civil Engineering Year: III	Section: A			
Course/Subject: Geotechnical	Engineering	Course Code: GR18A3002			
Name of the Faculty: Dr. C.La	vanya	Dept.: Civil Engineering			
Designation: Professor					
Lesson No: <u>6</u> I Lesson Title: Pre-consolidation	Duration of Lesson: <u>1hr</u> 1 pressure				
INSTRUCTIONAL/LESSON	OBJECTIVES:				
On completion of this lesson the	ne student shall be able to:				
 Determine pre-consolidation pressure Infer void ratio and log effective stress curve 					
TEACHING AIDS : WE TEACHING POINTS :	ite board, marker				
 Pre-consolidation str Casagrande's method Consolidation curve 	ess d of determination				

Assignment / Questions: 1. Outline about stress history of clay soils. (Cob -4, CO-4)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A		
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002		
Name of the Faculty: Dr. C.La	ivanya		Dept.: Civil Engineering		
Designation: Professor					
Lesson No: <u>7</u> Lesson Title: Terzaghi's Theo	Duration of Lesson:	<u>1hr</u>			
INSTRUCTIONAL/LESSON	OBJECTIVES:				
On completion of this lesson the student shall be able to:					
 Analyse rate of settlement Determine coefficient of con Outline the points referring 	nsolidation to boundary conditio	ns			
TEACHING AIDS : WI TEACHING POINTS :	nite board, marker				
 Consolidation settler One dimensional con Boundary conditions Coefficient of conso Double drainage and Degree of consolida 	ment nsolidation theory s lidation l single drainage tion				

Assignment / Questions:

1. Analyse rate of settlement and consolidation parameters. (Cob -4, CO-4)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

TUTORIAL SHEET - 4

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.L.	avanya		Dept.: Civil Engineering
Designation: Professor			

This Tutorial corresponds to Unit No. - IV & Lesson

Q1. Debate factors affecting compaction of a soil.

Q2. The maximum dry density and optimum moisture content of a soil from standard proctor's test is 18kN/m³ and 16% respectively. Calculate degree of saturation of the sample, assuming the specific gravity of soil grains as 2.70.

Q3. Analyse a suitable procedure to determine the preconsolidation pressure.

Q4. A 30 mm thick oedometer sample of clay reached 30% consolidation in 15 minutes with drainage at top and bottom. Determine how long would it take the clay layer from which this sample was obtained to reach 60% consolidation? The clay layer had one-way drainage and was 6m thick.

Objective Nos.: 4 Outcome Nos.: 4

Signature of HOD

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 4

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tec	h Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnic	al Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.Lavanya			Dept.: Civil Engineering
Designation: Professor			
This Assignment correspond	s to Unit No IV &	Lesson	

Q1. Differentiate between 'compaction' and 'consolidation'.

Q2. Debate the effect of compaction on soil properties.

Q3. A soil in the borrow pit is at a dry density of $17kN/m^3$ with a moisture content of 10%. The soil is excavated from this pit and compacted in an embankment to a dry density of $18kN/m^3$ with a moisture content of 15%. Determine the quantity of soil to be excavated from the borrow pit and the amount of water to be added for 100 m³ of compacted soil in the embankment.

Q4. In a consolidation test the following results have been obtained. When the load was changed from 50kN/m² to 100kN/m², the void ratio changed from 0.70 to 0.65. Determine the coefficient of volume decrease, m_v and the compression index, C_c.

Objective Nos.: 4 Outcome Nos.: 4

Signature of HOD

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester

: I

Semester

Name of the Program: B.Tech Civil Engineering Year: III

Section: A

Course/Subject: Geotechnical Engineering

Course Code: GR18A3002

Name of the Faculty: Dr. C.Lavanya

Designation: Professor

Dept.: Civil Engineering

Lesson No.	Unit No.	Date	No. of Periods	Topics	Course Objectives & Outcomes	References Text Book Page No.
1		24-11-2021	1	Shear Strength - Mohr circle and its characteristics	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.287
2		25-11-2021	1	principal planes, relation between major and minor principal stresses	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.287-289
3		25-11-2021	1	Mohr-Coulomb theory	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.290-296
4	V	29-11-2021	1	Direct shear test and it merits	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.296-302
5		29-11-2021	1	Tri-axial compression test and its behaviour of UU, CU and CD	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.311-313
6		01-12-2021	1	Unconfined compression test and vane shear test	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.303-308
7		02-12-2021	1	Computation of effective shear strength parameters	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.314
8		06-12-2021	1	Problems	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.314

9	08-12-2021	1	Problems	COb-5 CO-5	Gopal Ranjan & ASR Rao, pp.	
---	------------	---	----------	---------------	--------------------------------	--

Signature of HOD

Signature of faculty

Note:

Ensure that all topics specified in the course are mentioned.
 Additional topics covered, if any, may also be specified in bold
 Mention the corresponding course objective and out come numbers against each topic.

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: B.Tech	n Civil Engineering	Year: III	Section: A	
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002	
Name of the Faculty: Dr. C.L.	avanya		Dept.: Civil Engineering	
Designation: Professor				
Lesson No: <u>1</u>	Duration of Lesson:	<u>1hr</u>		
Lesson Title: Shear strength o	of soils			
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson	the student shall be ab	le to:		
 Determine the shear strength of soils Identify Mohr circle of stress Analyse the mechanism of shear resistance 				
TEACHING AIDS: WTEACHING POINTS:	hite board, marker			
• Shear strength				
 Shear stress Type of soils 				
 Angle of internal fri 	iction			

Cohesion

Assignment / Questions:

1. Analyse the mechanism of shear resistance and strength. (Cob -5, CO-5)

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical	l Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: $\underline{2}$ Lesson Title: Mohr circle of st	Duration of Lesson:	<u>1hr</u>	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson t	he student shall be ab	le to:	
 Identify Mohr failure criter Illustrate normal and shear 	ria stress		
TEACHING AIDS : WI TEACHING POINTS :	hite board, marker		
 Principal stresses Normal stress			

- Shear stress
- Mohr circle

Assignment / Questions: 1. Analyze the mechanism of Mohr failure criteria. (Cob -4, CO-4)

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: B.Tech	Civil Engineering Ye	ear: III	Section: A		
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002		
Name of the Faculty: Dr. C.La	vanya		Dept.: Civil Engineering		
Designation: Professor					
Lesson No: <u>3</u> Lesson Title: Mohr - Coulomb	Duration of Lesson: <u>1hr</u> Failure theories	<u>.</u>			
INSTRUCTIONAL/LESSON	OBJECTIVES:				
On completion of this lesson the	ne student shall be able t	to:			
 Identify Mohr failure criteria Calculate shear strength of soils Illustrate shear strength parameters 					
TEACHING AIDS : WI TEACHING POINTS :	iite board, marker				
 Shear strength Mohr theory Coulomb's equation Cohesion Angle of internal frid 	rtion				

Assignment / Questions:

1. Explain determination of shear strength of soils. (Cob -4, CO-4)

LESSON PLAN

Academic Year	: 2021-22	
Semester	: I	
Name of the Program: I	3.Tech Civil Engineering Year: III	Section: A
Course/Subject: Geoted	chnical Engineering	Course Code: GR18A3002
Name of the Faculty: D	r. C.Lavanya	Dept.: Civil Engineering
Designation: Professor		
Lesson No: <u>4</u> Lesson Title: Types of l	Duration of Lesson: <u>1hr</u> laboratory strength tests	
INSTRUCTIONAL/LE	SSON OBJECTIVES:	
On completion of this le	esson the student shall be able to:	
 Identify the various to Compare the merits a Determine the results 	ests involved in shear strength and demerits of tests s of various shear tests	
TEACHING AIDS TEACHING POINTS	: White board, marker :	
 Laboratory ter Direct shear te Tri-axial test Unconfined c Vane shear te Drainage conditioned co	sts est ompression test st ditions	

Assignment / Questions:

1. Outline merits and demerits of direct shear test. (Cob -4, CO-4)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	
Semester	: I	
Name of the Program: B.Tech	Civil Engineering Year: III	Section: A
Course/Subject: Geotechnical	Engineering	Course Code: GR18A3002
Name of the Faculty: Dr. C.La	vanya	Dept.: Civil Engineering
Designation: Professor		
Lesson No: $\underline{5}$ ILesson Title:Shear strength of	Duration of Lesson: <u>1hr</u> sands	
INSTRUCTIONAL/LESSON	OBJECTIVES:	
On completion of this lesson th	e student shall be able to:	
 Differentiate between shear Compare shear stress and sh Compare shear stress and no 	strength of loose and dense sands ear strain for sands rmal stress for sands	
TEACHING AIDS: WhTEACHING POINTS:	ite board, marker	
 Shear strength Shear stress Normal stress Shear strain 		

- Critical void ratio
- Dense sand and loose sand

Assignment / Questions:

1. Differentiate between shear strength of loose and dense sands (Cob -4, CO-4)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical	Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering
Designation: Professor			
Lesson No: <u>6</u> Lesson Title: shear strength of	Duration of Lesson: f clays	<u>1hr</u>	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson t	he student shall be ab	ble to:	
 Differentiate between vario Analyse the shear strength o Identify Mohr circles 	us drainage condition of clays	is in clayey soils	
TEACHING AIDS . WI TEACHING POINTS :	inte ooaru, marker		
Shear strengthUndrained test			

- Consolidated undrained test
- Drained test

Assignment / Questions:

1. Differentiate between shear strength of sands and clays. (Cob -4, CO-4)

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A		
Course/Subject: Geotechnica	l Engineering		Course Code: GR18A3002		
Name of the Faculty: Dr. C.L.	avanya		Dept.: Civil Engineering		
Designation: Professor					
Lesson No: <u>7</u> Lesson Title: Critical Void Ra	Duration of Lesson:	<u>1hr</u>			
INSTRUCTIONAL/LESSON	OBJECTIVES:				
On completion of this lesson t	he student shall be ab	le to:			
 Outline about critical void ratio Infer about liquefaction 					
TEACHING AIDS : W TEACHING POINTS :	hite board, marker				
 Critical void ratio Liquefaction Saturated fine cohes 	sionless soils				

• Shear strength

Assignment / Questions:

1. Outline about critical void ratio and liquefaction. (Cob -4, CO-4)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

TUTORIAL SHEET - 5

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tech	Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnical Engineering			Course Code: GR18A3002
Name of the Faculty: Dr. C.La	avanya		Dept.: Civil Engineering
Designation: Professor			

This Tutorial corresponds to Unit No. - V & Lesson

Q1. Analyse Mohr-Coulomb failure envelope.

Q2. Compare the stress-strain relationship for dense and loose sands.

Q3. In a tri-axial shear test conducted on a soil sample having cohesion of $12kN/m^2$ and angle of shearing resistance of 36°, the cell pressure was $200kN/m^2$. Determine the value of the deviator stress at failure.

Objective Nos.: 5 Outcome Nos.: 5

Signature of HOD

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET – 5

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Teo	ch Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnic	al Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.	Lavanya		Dept.: Civil Engineering
Designation: Professor			

This Assignment corresponds to Unit No. - V & Lesson

Q1. Differentiate the advantages and disadvantages of a direct shear test?

Q2. A vane, 10.8 cm long, 7.2 cm in diameter, was pressed into soft clay at the bottom of a bore hole. Torque was applied and the value at failure was 45 Nm. Determine shear strength of the clay on a horizontal plane.

Q3. A cylindrical specimen of a saturated soil fails under an axial stress 150kN/m² in an unconfined compression test. The failure plane makes an angle of 52° with the horizontal. Calculate the cohesion and angle of internal friction of the soil.

Objective Nos.: 5 Outcome Nos.: 5

Signature of HOD

EVALUATION STRATEGY

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tec	h Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnica	al Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.I	Lavanya		Dept.: Civil Engineering

Designation: Professor

1. TARGET:

A) Percentage for pass: 90%

b) Percentage of class:

Total Strength: 130

S. No.	Class / Division	No. of Students
1	First Class with distinction	60
2	First Class	60
3	Pass Class	10

2. COURSE PLAN & CONTENT DELIVERY

S.No	Plan	Brief Description
1	Practice classes	51 Theory classes for Section A, B
2	Demonstration	Demonstration of experiments in the lab
3	Assignments	Assignments for solving numerical problems

3. METHOD OF EVALUATION

3.1 Continuous Assessment Examinations

- Assignments: Assignments to assess the knowledge of the student on the basics and concepts in Geotechnical Engineering, index properties, permeability, stress distribution, compaction, consolidation and shear strength of soils.
- Seminars: To assess the knowledge of the student in Geotechnical Engineering.
- Quiz: To assess the knowledge of the student in various concepts and basics of Geotechnical Engineering.
- Internal Examination: Internal Examinations to assess their overall knowledge in Geotechnical Engineering.

3.2. Semester/End Examination

To test their abilities in the course Geotechnical Engineering and to approve their abilities learnt during the same.

4. List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this Semester.

Introducing some practical laboratory exercises on course grained soils.

Signature of HOD

MAPPING

GR18A3002/ Geotechnical Engineering	Program Outcomes / Program Specific Outcomes													
Course Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	PSO1	PSO2
Identify basic Engineering properties of soil and classify the soil.	Н	М	М	Μ										Μ
Perform and evaluate the experiments to determine the permeability and effective stresses of soil.	Μ	Н	Μ	H								Μ		
Identify, formulate and solve various problems in compaction and stresses in soils.	Μ	Н	Η	Н			м			Μ		М		Μ
Analyse the mechanism and behaviour of soil under consolidation process.	Μ	Н	Η	Н			М			Μ		М		
Evaluate the behaviour of shear strength of soil mass.	Μ	М	Н	Н						Μ		Μ		

Assignments

Assignment – I

- 1. A soil has a plastic limit of 26% and a plasticity index of 30. If the natural water content of the soil is 38%, Compute liquidity index and its consistency index? How do you illustrate the consistency?
- 2. The dry unit weight of a sand sample in the loosest state is 12.5kN/m³ and in the densest state, it is 19kN/m³. Compute the density index of the sand when it has a porosity of 41%. Assume the grain specific gravity as 2.7.
- 3. Classify the following soils as per IS Soil classification system for (i) Liquid limit = 63% and Plastic limit = 24% (ii) If 71% of the soil by weight is retained on 75 μ IS Sieve and 63% of the soil passing through 4.75 mm IS sieve of the coarse fraction (+75 μ). From GSD curve, the values for Coefficient of uniformity and Coefficient of curvature are 4.8 and 2.1 respectively.
- 4. A soil sample has a diameter of 38mm and a height of 76mm. Its wet weight is 1.15N. Upon drying its weight reduced to 0.5N. In the wet state what was the degree of saturation, water content, void ratio, porosity, total unit weight and dry unit weight. Take Gs=2.7

- 1. Explain factors effecting permeability.
- 2. What are the characteristics and uses of flow nets?
- 3. A sample in a variable head permeameter is 8cm in diameter and 10cm high. The permeability of the sample is estimated to be 10×10^{-4} cm/s. If it is desired that the head in the stand pipe should fall from 24cm to 12cm in 3minutes, determine the size of the standpipe which should be used.
- 4. Determine the neutral and effective stress at a depth of 16 m below the ground level for the following conditions: Water table is 3 m below ground level; G = 2.68; e = 0.72; average water content of the soil above water table is 8%.

Assignment – III

- 1. Outline a brief critical note on 'Newmark's influence chart'.
- 2. A load 1000 kN acts as a point load at the surface of a soil mass. Calculate stress at a point 3m below and 4m away from the point of action of the load by Boussinesq's formula. Compare the value with the result from Westergaard's theory.
- 3. Explain the factors affecting compaction.

Assignment – IV

- 1. A 30 mm thick oedometer sample of clay reached 30% consolidation in 15 minutes with drainage at top and bottom. Determine how long would it take the clay layer from which this sample was obtained to reach 60% consolidation? The clay layer had one-way drainage and was 6m thick.
- 2. A layer of soft clay is 6m thick and lies under a newly constructed building. The weight of sand overlying the clayey layer produces a pressure of 260kN/m² and the new construction increases the pressure by 100kN/m². If the compression index is 0.5, compute the settlement. Water content is 40% and specific gravity of grains is 2.65.

Assignment – V

- 1. Explain shear strength of clays.
- 2. A vane, 10.8 cm long, 7.2 cm in diameter, was pressed into soft clay at the bottom of a bore hole. Torque was applied and the value at failure was 45 Nm. Determine shear strength of the clay on a horizontal plane.
- 3. The angle of internal friction of a saturated, cohesionless soil is 40°. Determine the ratio of shear stress to normal effective stress on the failure plane.
- 4. In a direct shear test, a dry sand sample failed at a shear stress of 90kN/m² when the normal stress on the sample was 120kN/m². The angle of internal friction of the sand sample is approximately.

RUBRIC TEMPLATE

Academic Year: 2021-22Semester: IName of the Program: B.Tech Civil EngineeringYear: IIICourse/Subject: Geotechnical EngineeringYear: LiuName of the Faculty: Dr. C. LavanyaDesignation: Professor

Section: A Course Code: GR18A3002 Dept.: Civil Engineering

Objective: To learn basics and concepts of soil mechanics. Student Outcome: Learn basic concepts and engineering properties of soils.

			Beginning	Developing	Reflecting Development	Accomplished	Exemplary	Score
S. N o	Name of the Stude nt	Performance Criteria	1	2	3	4	5	
1	X	The level of knowledge on basic concepts of soil mechanics The level of knowledge on engineering properties of soils	Low level of knowledge on basic concepts of soil mechanics Low level of knowledge on engineering properties of soils	Able to understan d the basic concepts of soil mechanics Able to understan d engineerin g properties of soils	Ability to explain the basic concepts of soil mechanics Ability to explain engineering properties of soils	Full knowledge on basic concepts of soil mechanics Full knowledge on engineering properties of soils	Analysin g and impleme nting the knowledg e of basic concepts of soil mechanic s Analysin g and applicatio n of knowledg e of engineeri ng propertie s of soils	5
		The level of knowledge to analyse the behavior of soil.	Low level of knowledge to analyse the behavior of soil.	Able to understan d to study the behavior of soil.	Ability to explain to the behavior of soil.	Full knowledge to analyse the behavior of soil.	Analysin g and impleme nting the knowledg e of the behavior of soils.	3

COURSE COMPLETION STATUS

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tec	h Civil Engineering	Year: III	Section: A
Course/Subject: Geotechnica	al Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.I	Lavanya		Dept.: Civil Engineering
Designation: Professor			

Actual Date of Completion & Remarks, if any

Units	Remarks	Objectives Achieved	Outcomes Achieved
Unit I	09-09-2021 Unit covered on time	1	1
Unit II	04-10-2021 Unit covered on time	2	2
Unit III	01-11-2021 Unit covered on time	3	3
Unit IV	22-11-2021 Unit covered on time	4	4
Unit V	08-12-2021 Unit covered on time	5	5

Signature of HOD

Signature of faculty

Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE COMPLETION STATUS

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.Tec	h Civil Engineering	Year: III	Section: B
Course/Subject: Geotechnic	al Engineering		Course Code: GR18A3002
Name of the Faculty: Dr. C.I	Lavanya		Dept.: Civil Engineering
Designation: Professor			

Actual Date of Completion & Remarks, if any

Units	Remarks	Objectives Achieved	Outcomes Achieved
Unit I	14-09-2021 Unit covered on time	1	1
Unit II	08-10-2021 Unit covered on time	2	2
Unit III	05-11-2021 Unit covered on time	3	3
Unit IV	19-11-2021 Unit covered on time	4	4
Unit V	07-12-2021 Unit covered on time	5	5

Signature of HOD

Signature of faculty

Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.

(Autonomous)

Department of Civil Engineering

.Tech	III Year-I Sem (2021-22) Geotechnical Engineering (GR18A3002)	18-10-2021
ame:_	Dbjective Exam Hall Ticket No.:	
	Answer all the questions.	
ll que: Thoos	stions carry equal marks. Time: 10Min	Max. Marks: 05
1.	of a soil mass is the ratio of the volume of voids to the total volume	of the soil mass.
2	(a) void ratio (b) degree of saturation (c) porosity (d) air content	[]
2.	In clay mineralogy, which mineral is called least active mineral.	Ĺ
	a) Monthormornie b) Raomite c) mite d) Hanoysite	
3.	The size of the coarse sand is .	[]
	(a) 4.75mm – 2.0mm b) 2.0mm – 0.425mm (c) 2.0mm – 0.075mm (d) 0).425mm – 0.075mm
4.	The ratio of difference between natural water content of soil and i	ts plastic limit to it
	plasticity index is called	[]
F	(a) flow index b) liquidity index (c) toughness index (d) shrinkage ratio and light the value plot below A line and light	atio uid limit ic EE% in th
5.	nlasticity chart	
	(a) Cl (b) CH (c) MH (d) MI	LJ
6.	The relation between total stress (σ), effective stress (σ) and pore water pressu	ıre (u) is
	(a) $\sigma' = \sigma / u$ (b) $\sigma' = \sigma * u$ (c) $\sigma' = \sigma + u$ (d) $\sigma' = \sigma - u$	[]
7.	The permeability of a partially saturated soil is comparatively	than that of fully
	saturated soils.	r
8	The permeability in clayey soils due to adsorbed water	L
0.	(a) increases (b) decreases (c) same (d) no change	[]
9.	In permeability for stratified soils when flow is horizontal, then	[]
	(a) Velocity of flow is same b) hydraulic gradient is different	
	c) Velocity of flow is different d) head loss if different	
10.	The pressure transmitted through soil mass by soil particles through their po	ints of contact is called
		[
	(a) Total stress (b) Effective stress (c) Neutral stress (d) pore pressure	

-----X-----

Gokaraju R	Gokaraju Rangaraju Institute of Engineering and Technology				
	(Autonomous)	(Autonomous)			
Dej	partment of Civil Engineering				
I-Mid Term Examination (Descriptive)	Oct - 2021				
Sub: Geotechnical Engineering (GR18A300)2) Year: B.Tech	III Year-I Sem (2021-22)			
Date of Exam: 18/10/2021 (AN)	Max. Marks: 15	Time: 90 Min			

Answer any Three questions.

All questions carry equal marks.

- (a) Derive the relation between degree of saturation, void ratio, water content and specific gravity of solids. (2.5M)
 (b) The porosity of a soil sample is 35% and the specific gravity of its particles is 2.7. Calculate its void ratio, dry density, saturated unit weight and submerged unit weight. (2.5M)
- 2. Outline about Indian Standard Soil Classification System for coarse grained and fine grained soils. (5M)
- 3. An unconfined aquifer is known to be 32m thick below the water table. A constant discharge of 2cubic meters per minute is pumped out of the aquifer through a well till the water level in the well becomes steady. Two observation wells at distances of 15m and 70m from the well show falls of 3m and 0.7m respectively from their static water levels. Find the permeability of the aquifer. (5M)
- 4. A saturated sand layer over a clay stratum is 5m in depth. The water is 1.5m below ground level. If the bulk density of saturated sand is 17.66kN/m³, calculate the total, effective and neutral stress on the top of the clay layer. Take G=2.65. Assume soil above water table is dry.

(5M)

-----X------

	Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Department of Civil Engineering						
I	B.Tech III Year-I Sem (2021-22) II-Mid Term Examination, 09-12-2021 (AN) Geotechnical Engineering (GR18A3002)						
I	Objective Exam Name: Hall Ticket No.:						
	Answer all the questions. All questions carry equal marks. Time: 10Min Max. Marks: 05						
	Choose the correct alternative:						
1.	For the determination of the vertical stress at any point caused by any irregular loaded area,is used. [3] (a) Newmark's chart (b) Boussinesq's theory (c) Westergaard's theory (d) none of the above						
2.	The weight and height of fall of the rammer used for heavy compaction test is [] (a) 2.6kg and 31cm (b) 3.9kg and 40cm (c) 4.9kg and 45cm (d) none of the above						
3.	The vertical stress of a uniformly circular loaded area of radius R, intensity q acting at a depth z, directly below the center is given by [] a) q[$1 - (1/(1+(R/z)^2))^{5/2}$] b) q[$1 - (1/(1+(R/z)^2))^{3/2}$] c) q[$1 + (1/(1+(R/z)^2))^{3/2}$] d) q[$1 + (1/(1+(R/z)^2))^{5/2}$]						
4.	The compactive effort in the modified proctor test is about times more than that of standard proctor test.[](a) 5.46(b) 4.56(c) 3.46(d) none of the above						
5.	Time taken forconsolidation can be estimated by using Casagrande's Logarithm of time []fitting method.[](a) 20%(b) 50%(c) 90%(d) none of the above						
6.	The consolidation test results are used to find the [] (a) void ratio (b) coefficient of consolidation (c) coefficient of compressibility (d) All the above						
7.	If the unconfined compressive strength of the soil is 300kN/m ² , then its undrained shear strength is kN/m ² . [] (a) 100 b) 150 (c) 50 (d) 25						
8.	In direct shear test, the failure plane is [] (a) inclined (b) horizontal (c) vertical (d) in any direction						
9.	is useful to obtain undrained strength to evaluate the sensitivity of soil. [] (a) Direct shear test (b) Tri-axial test (c) Unconfined compression test (d) Vane shear test						
10	is the test where drainage conditions can be controlled. [] (a) Direct shear test (b) Tri-axial test (c) Unconfined compression test (d) Vane shear test						
	X						

Southuts of E	Gokaraju Rangara	aju Institute of Engineering and	Technology		
Griet		(Autonomous)			
)) ((((L	Dep	partment of Civil Engineering			
II-Mid ⁻	Term Examination (Descriptive)	Dec - 2021			
Sub: Geotechnical Engineering (GR18A3002) Year: B.Tech III Year-I Sem (2021-22)					
Date of	f Exam: 09/12/2021 (AN)	Max. Marks: 15	Time: 90 Min		
Answer any Three questions. All questions carry equal marks.					
 (a) Discuss the factors affecting compaction of a soil. (2.5M) (b) A load 1000kN acts as a point load at the surface of a soil mass. Estimate the stress at a point 3m below and 4m away from the point of action of the load by Boussinesq's theory Compare the value with the result from Westergaard's theory. (2.5M) 					
2.	 (a) Outline about Casagrande logarithm consolidation. (b) In a consolidation test the following from 50kN/m² to 100kN/m², the v coefficient of volume decrease, m_v and 	m of time fitting method for d ig results have been obtained. void ratio changed from 0.7 d the compression index, C _c .	letermining of coefficient of (2.5M) When the load was changed '0 to 0.65. Determine the (2.5M)		

3.	(a) Differentiate the merits and demerits of direct shear test?(b) Analyze the shear strength of clays.	(2.5M) (2.5M)
4.	(a) Outline Newmarks Influence chart with a neat sketch.(b) Explain about unconfined compressive strength.	(2.5M) (2.5M)

-----X-----