ADVANCED SOLID MECHANICS (GR20D5002)

I-M.Tech – I Semester (AY 2021-22)

Mr. K. Veera Babu Assistant Professor

Department of Civil Engineering

Gokaraju Rangaraju Institute of Engineering and Technology

Bachupally, Kukatpally, Hyderabad – 500 090.

Gokaraju Rangaraju Institute of Engineering and Technology

Department of Civil Engineering

Advanced Solid Mechanics

Course File Check List

S. No.	Name of the Format	
1	Syllabus	
2	Time Table	
3	Program Educational Objectives	
4	Program Objectives	
5	Course Objectives	
6	Course Outcomes	
7	Students Roll List	
8	Guide lines to study the course books & references, course design & delivery	
9	Course Schedule	
10	Course Plan	
11	Unit Plan	
12	Evaluation Strategy	
13	Assessment in relation to COB's and CO's	
14	Tutorial Sheets	
15	Assignment Sheets	
16	Rubric for course	
17	Mappings of CO's and PO's	
18	Model question papers	
19	Mid-I and Mid-II question papers	
20	Mid-I marks	
21	Mid-II marks	
22	Sample answer scripts and Assignments	
23	Course materials like Notes, PPT's, Videos, etc,	

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Civil Engineering ADVANCED SOLID MECHANICS

Course Code: GR20D5002

I Year I Semester

Course Prerequisites: Mathematics and Strength of Materials

UNIT I:

Introduction to Elasticity : Notation for forces and stresses - Components of stresses - Components of strain — Hooke's law, Strain and Stress Fields, Stress and strain at a Point, Stress Components on an Arbitrary Plane, Hydrostatic and Deviatoric Components, Saint- Venant's principle.

UNIT II:

Equations of Elasticity in Two-dimensional problems in rectangular and polar coordinates: Equations of Equilibrium, Stress- Strain relations, Strain —Displacement and Compatibility Relations, Boundary conditions, Plane stress and plane strain analysis - stress function -Two dimensional problems in rectangular coordinates - solution by polynomials.

UNIT III:

Analysis of stress and strain in three dimensions in rectangular and polar coordinates - principal stresses - stress ellipsoid-determination of principal stresses - max shear stresses- equations of equilibrium in terms of displacements.

UNIT IV:

Torsion of Prismatic Bars: Saint Venant's Method, Prandtl's Membrane Analogy, Torsion of Rectangular Bar, use of soap films in solving torsion problems, Bending of Prismatic Bars: Stress function - bending of cantilever — circular cross section.

UNIT V:

Concepts of plasticity, Plastic Deformation, Strain Hardening, Idealized Stress- Strain curve, Yield Criterions, Plastic Stress-Strain Relations.

References:

- 1. Theory of Elasticity, Timoshenko S. and GoodierJ. N., McGraw Hill, 1961.
- 2. Elasticity, Sadd M.H.,E1sevier,2005.
- 3. Engineering Solid Mechanics, RagabA.R., BayoumiS.E., CRC Press, 1999.
- 4. Computational Elasticity, AmeenM., Narosa, 2005.
- 5. Solid Mechanics, KazimiS. M. A., Tata McGraw Hi11,1994.
- 6. Advanced Mechanics of Solids, SrinathL.S., Tata McGraw Hi11,2000.

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING

TIME TABLE

I YEAR I SEMESTER

I M.Tech (GR20) - I Semester

AY: 2021-22

DAY/ HOUR	9:00-10:00	10:00- 11:00	11:00-12:00	12:00-01:00	01:00- 02:00	02:00- 03:00	03:00- 04:00
Monday			ASM				
Tuesday					ASM		
Wednesday				LUNCH			
Thursday	ASM	ASM		BREAK			
Friday							
Saturday							

Program Educational Objectives(PEO's)

PEO1: Graduates of the program will equip with professional expertise on the theories, process, methods and techniques for building high-quality structures in a cost-effective manner.

PEO2: Graduates of the program will be able to design structural components using contemporary softwares and professional tools with quality practices of international standards

PEO3: Graduates of the program will be effective as both an individual contributor and a member of a development team with professional, ethical and social responsibilities.

PEO4: Graduates of the program will grow professionally through continuing education, training, research, and adapting to the rapidly changing technological trends globally in structural Engineering

Program Outcomes(PO's):

PO 1: An ability to independently carry out research /investigation and development to solve practical problems.

PO 2: An ability to write and present a substantial technical report/document.

PO 3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelors.

PO 4: Possess critical thinking skills and solve core, complex and multidisciplinary structural engineering problems.

PO 5: Assess the impact of professional engineering solutions in an environmental context along with societal, health, safety, legal, ethical and cultural issues and the need for sustainable development.

PO 6: Recognize the need for life-long learning to improve knowledge and competence.

COURSE OBJECTIVES

Academic Year : 2021-22

Semester

Name of the Program: M.Tech Structural Engineering Year: I

: I

Course/Subject: Advanced Solid Mechanics

Name of the Faculty: Mr. K. Veera Babu

Designation: Assistant Professor

On completion of this Subject/Course the student shall be able to:

S.No	Objectives
1	To explain the theory, concepts and principles of Elasticity
2	To generalize the equations of elasticity for two-dimensional problems of elasticity interms of Cartesian and polar coordinates.
3	To demonstrate the equations of elasticity for two-dimensional problems of elasticity in terms of Cartesian and polar coordinates
4	To apply principles of elasticity to analyze the torsion and bending in prismatic bars
5	To extend the principles of stress/strain for plastic deformation to study the modes of failure

Signature of HOD

Signature of faculty

Section: A

Course Code: GR20D5002

Dept.: Civil Engineering

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090.

COURSE OUTCOMES

Academic Year : 2021-22

Semester : I

Name of the Program: M.Tech Structural Engineering Year: I

Course/Subject: Advanced Solid Mechanics

Section: A

Course Code: GR20D5002

Dept.: Civil Engineering

Name of the Faculty: Mr. K. Veera Babu

Designation: Assistant Professor

The expected outcomes of the Course/Subject are: At the end of the course, the student will be able to

S.No	Outcomes
1	Have a good understanding of the theory, concepts, principles and governing
1	equations of Elasticity principles.
	Develop equations of equilibrium and draw relations among stress, strain and
2	displacement and utilize the equilibrium equations, compatibility equations and
	various boundary conditions to analyze elastic problems.
	Gain the understating of three-dimensional problems of elasticity in Cartesian
3	coordinates system ad able to determine principal stresses and planes of 3D
	problems.
4	Apply the principles of elasticity to solve torsional problems in prismatic bars and
4	tubes.
5	Use the concepts of stresses and strains for plastic deformation to comprehend the
5	yield criteria of materials.

Signature of HOD

Signature of faculty

STUDENT ROLL LIST

M.Tech Structural Engg. I Year-I Sem- Section A(GR20) 2021-22

S.No	Reg No	Student Name
1	21241D2001	ATKAPURAM PRASHANTH
2	21241D2002	BANDI SRI RAM GOPAL
3	21241D2003	CHALLA MADHAVI
4	21241D2004	PAMMI DIVYA
5	21241D2005	DUMMA UMESH KUMAR
6	21241D2006	K LATHASREE
7	21241D2007	MARIYALA VAISHNAVI
8	21241D2008	MAVOORI PRANAV
9	21241D2009	MITTAPALLI NAGA ASHWINI
10	21241D2010	RAVULA VENKATA SURAJ REDDY
11	21241D2011	REPATI MOHAN BABU
12	21241D2012	CHERUKU SANDHYA
13	21241D2013	SHAIK FEROZ
14	21241D2014	S K SAI CHANDRA
15	21241D2015	THOTA HARSHAVARDHAN
16	21241D2016	VARIKUPPULA LALITHA
17	21241D2017	YAMBA RAMA GNANENDRA SAI
18	21241D2018	YENUMALA DEVESH GOUD
19	21241D2019	S PRASHANTH KUMAR
20	21241D2020	BAVANDLAPELLI THARUNTEJA
21	21241D2021	G NITISH KUMAR

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

GUIDELINES TO STUDY THE COURSE/SUBJECT

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Te	ech Structural Engineering	Year: I	Section: A
Course/Subject: Advanced	Solid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K	. Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profe	essor		

Guidelines to students

Guidelines to study the Course: Advanced Solid Mechanics

The course helps the students to learn and understand the importance of geotechnical engineering in different phases of construction. One can learn to determine the various engineering properties of soils. This course makes the students to understand about index properties, consistency of clays, permeability, compaction, consolidation, shear strength, etc of various types of soils.

So the students should have the prerequisites

- knowledge of Mathematics
- knowledge of Strength of Materials

To become expertise in this course, students need to be perfect with the basic concepts of Solid Mechanics to understand and analyse the behaviour of Materials

Where will this subject help?

- Useful in foundation engineering, analyzing type structures.
- This course let the students to work with various types of materials
- This course let the students to determine the engineering properties of materials

Books / Material

- 1. Theory of Elasticity, Timoshenko S. and GoodierJ. N., McGraw Hill, 1961.
- 2. Elasticity, Sadd M.H.,E1sevier,2005.
- 3. Engineering Solid Mechanics, RagabA.R., BayoumiS.E., CRC Press, 1999.

REFERENCES

- 1. Computational Elasticity, AmeenM., Narosa, 2005.
- 2. Solid Mechanics, KazimiS. M. A., Tata McGraw Hi11,1994.
- 3. Advanced Mechanics of Solids, SrinathL.S., Tata McGraw Hi11,2000.

Websites:

www.nptel.ac.in/courses/civilengineering/advancedsoilidmechanics/1051030198/ www.google.co.in

Course Design and Delivery System (CDD):

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to –

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Signature of HOD

Signature of faculty

COURSE SCHEDULE

Academic Year : 2021-22

Semester : I

Name of the Program: M.Tech Structural Engineering Year: I

Course/Subject: Advanced Solid Mechanics

Name of the Faculty: Mr. K. Veera Babu

Designation: Assistant Professor

The Schedule for the whole Course / Subject is:

		Duration	Total No.	
S. No.	Description	From	То	Of Periods
1.	UNIT I: Introduction to Elasticity	15-11-2021	02-12-2021	12
2.	UNIT II: Equations of Elasticity	06-12-2021	28-12-2021	12
3.	UNIT III: Analysis of stress and strain in 3D	30-12-2021	20-01-2022	13
4.	UNIT IV: Torsion of Prismatic bars	24-01-2022	17-02-2022	13
5.	UNIT V: Plasticity	21-02-2022	10-03-2022	12

Total No. of Instructional periods available for the course: 62 Hours / Periods

Course Code: GR20D5002

Section: A

Dept.: Civil Engineering

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2021-22

Semester

Name of the Program: M.Tech Structural Engineering

: I

Year: I

Section: A

Course/Subject: Advanced Solid Mechanics

Course Code: GR20D5002

Name of the Faculty: Mr. K. Veera Babu

Dept.: Civil Engineering

Designation: Assistant Professor

S.No.	Date	Unit No.	Session Duration	Topics
1	15/11/2021	I	1	Introduction to ASM
2	16/11/2021	I	1	Elasticity ,Notation forces
3	18/11/2021	I	1	Components of Stress
4	18/11/2021	I	1	Components of Stress
5	22/11/2021	I	1	Components of strain
6	23/11/2021	I	1	Hook's law
7	25/11/2021	I	1	Derivation of Hook's law
8	25/11/2021	I	1	Problems
9	29/11/2021	I	1	Stress on Arbitrary plane
10	30/11/2021	I	1	Problems
11	02/12/2021	Ι	1	Hydrostatic state of stress, pure shear
12	02/12/2021	Ι	1	St.Vanant's Principle
13	06/12/2021	II	1	Displacement Components
14	07/12/2021	II	1	Equations of Equilibrium
15	09/12/2021	II	1	Problems

16	09/12/2021	II	1	2D and 3D Problems
17	13/12/2021	11	1	Introduction to Polar Coordinate System
18	14/12/2021	II	1	2D and 3D equations in polar system
19	16/12/2021	II	1	Stress function, Airy's
20	16/12/2021	11	1	Boundary conditions
21	20/12/2021	11	1	Solutions by polynomials
22	21/12/2021	11	1	Problems
23	23/12/2021	11	1	Problems
24	27/12/2021	11	1	Problems
25	27/12/2021	111	1	Analysis of Stress
26	28/12/2021	111	1	Principle stress
27	30/12/2021	111	1	Problems of principle stress
28	30/12/2021	111	1	Problems
29	03/01/2022	111	1	Stress function problems
30	04/01/2022	111	1	Compatibility equations
31	06/01/2022	111	1	Stress Ellipsoid
32	06/01/2022	111	1	Pure bending of beam
33	10/01/2022	111	1	Cantilever beam with end load
34	11/01/2022	111	1	Equations of displacements
35	11/01/2022	111	1	Problems
36	24/01/2022	111	1	Problems
37	25/01/2022	111	1	Problems
38	27/01/2022	IV	1	Introduction to Torsion
39	27/01/2022	IV	1	Basic Equations
40	31/01/2022	IV	1	Problems
41	01/02/2022	IV	1	St.Venant's method
42	03/02/2022	IV	1	Prandtls method

43	03/02/2022	IV	1	Membrane Analogy
44	07/02/2022	IV	1	Soap film concept
45	08/02/2022	IV	1	Problems
46	10/02/2022	IV	1	Bending of beam
47	10/02/2022	IV	1	Torsion equation for circular c/s
48	14/02/2022	IV	1	Torsion equation for Elliptical c/s
49	15/02/2022	IV	1	Problems
50	17/02/2022	IV	1	Problems
51	17/02/2022	V	1	Introduction to Plasticity
52	21/02/2022	V	1	Yield criteria
53	22/02/2022	V	1	Methods of Failure
54	24/02/2022	V	1	Methods of Failure
55	28/02/2022	V	1	Strain Hardening
56	01/03/2022	V	1	Idealized stress strain cure
57	04/03/2022	V	1	True stress and strain
58	04/03/2022	V	1	Problems
59	07/03/2022	V	1	Problems
60	08/03/2022	V	1	Problems
61	10/03/2022	V	1	Revision
62	10/03/2022	V	1	Revision

Note:

Ensure that all topics specified in the course are mentioned.
 Additional topics covered, if any, may also be specified in bold
 Mention the corresponding course objective and out come numbers against each topic.

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester

Name of the Program: M.Tech Structural Engineering Year: I

: I

Course/Subject: Advanced Solid Mechanics

Name of the Faculty: Mr. K. Veera Babu

Designation: Assistant Professor

Section: A

Course Code: GR20D5002

Dept.: Civil Engineering

UNIT I

Lesson No.	Uni t No.	Date	No. of Perio ds	Topics	Course Objectives & Outcomes	References Text Book Page No.
1		15/11/2021	1	Introduction to ASM	COb-1 & CO-1	Theory of Elasticity, Timoshenko S. and GoodierJ. N., McGraw
2		16/11/2021	1	Elasticity ,Notation forces	COb-1 & CO-1	
3		18/11/2021	1	Components of Stress	COb-1 & CO-1	
4	Ι	18/11/2021	1	Components of Stress	COb-1 & CO-1	
5		22/11/2021	1	Components of strain	COb-1 & CO-1	
6		23/11/2021	1	Hook's law	COb-1 & CO-1	
7		25/11/2021	1	Derivation of Hook's law	COb-1 & CO-1	
8		25/11/2021	1	Plane Stress and Strain	COb-1 & CO-1	

9	29/11/2021	1	Stress on Arbitrary plane	COb-1 & CO-1	
10	30/11/2021	1	Problems	COb-1 & CO-1	
11	02/12/2021	1	Hydrostatic state of stress, pure shear	COb-1 & CO-1	
12	02/12/2021	1	St.Vanant's Principle	COb-1 & CO-1	

UNIT II

Lesson No.	Unit No.	Date	No. of Periods	Topics	Course Objectives & Outcomes	References Text Book
1		06/12/2021	1	Displacement Components	COb-2 CO-2	Theory of Elasticity, Timoshenko S. and GoodierJ. N., McGraw
2		07/12/2021	1	Equations of Equilibrium	COb-2 CO-2	
3		09/12/2021	1	Problems	COb-2 CO-2	
4		09/12/2021	1	2D and 3D Problems	COb-2 CO-2	
5	II	13/12/2021	1	Introduction to Polar Coordinate System	COb-2 CO-2	
6		14/12/2021	1	2D and 3D equations in polar system	COb-2 CO-2	
7		16/12/2021	1	Stress function, Airy's	COb-2 CO-2	
8		16/12/2021	1	Boundary conditions	COb-2 CO-2	
9		20/12/2021	1	Solutions by polynomials	COb-2 CO-2	
10		21/12/2021	1	Bhirmonic Equation	COb-2 CO-2	
11		23/12/2021	1	Problems	COb-2 CO-2	

	27/12/2021		Lame's Ellipsoid	COb-2	
12		1	Ĩ	CO-2	

UNIT III

Lesson No.	Unit No.	Date	No. of Perio ds	Topics	Course Objectives & Outcomes	References Text Book
1		27/12/2021	1	Analysis of Stress	COb-3 CO-3	Theory of Elasticity, Timoshenko S. and GoodierJ. N., McGraw
2		28/12/2021	1	Principle stress	COb-3 CO-3	
3		30/12/2021	1	Problems on principle stress concept	COb-3 CO-3	
4		30/12/2021	1	Stress Transformation	COb-3 CO-3	
5		03/01/2022	1	Stress Transformation	COb-3 CO-3	
6	TT	04/01/2022	1	Stress function problems	COb-3 CO-3	
7	111	06/01/2022	1	Stress Ellipsoid	COb-3 CO-3	
8		06/01/2022	1	Pure bending of beam	COb-3 CO-3	
9		10/01/2022	1	Cantilever beam with end load	COb-3 CO-3	
10		11/01/2022	1	Compatibility equations	COb-3 CO-3	
11		11/01/2022	1	Boundary Conditions	COb-3 CO-3	
12		24/01/2022	1	3D Equations of polar system	COb-3 CO-3	
13		25/01/2022	1	Equations of displacements	COb-3 CO-3	

UNIT IV

Lesson No.	Unit No.	Date	No. of Perio ds	Topics	Course Objectives & Outcomes	References Text Book
1		27/01/2022	1	Introduction to Torsion	COb-4 & CO-4	Theory of Elasticity, Timoshenko S. and GoodierJ. N., McGraw
2		27/01/2022	1	Basic Equations	COb-4 & CO-4	
3		31/01/2022	1	Problems	COb-4 & CO-4	
4		01/02/2022	1	St.Venant's method	COb-4 & CO-4	
5		03/02/2022	1	Prandtls method	COb-4 & CO-4	
6	IV	03/02/2022	1	Membrane Analogy	COb-4 & CO-4	
7	1 V	07/02/2022	1	Soap film concept	COb-4 & CO-4	
8		08/02/2022	1	Problems	COb-4 & CO-4	
9		10/02/2022	1	Bending of beam	COb-4 & CO-4	
10		10/02/2022	1	Torsion equation for circular c/s	COb-4 & CO-4	
11		14/02/2022	1	Torsion equation for Elliptical c/s	COb-4 & CO-4	
12		15/02/2022	1	Problems	COb-4 & CO-4	
13		17/02/2022	1	Problems	COb-4 & CO-4	

UNIT V

Lesson No.	Unit No.	Date	No. of Periods	Topics	Course Objectives & Outcomes	References Text Book
1		17/02/202 2	1	Introduction to Plasticity	COb-5 CO-5	Theory of Elasticity, Timoshenko S. and GoodierJ. N., McGraw
2		21/02/202 2	1	Yield criteria	COb-5 CO-5	
3		22/02/202 2	1	Methods of Failure	COb-5 CO-5	
4		24/02/202 2	1	Methods of Failure	COb-5 CO-5	
5		28/02/202 2	1	Strain Hardening	COb-5 CO-5	
6	V	01/03/202 2	1	Idealized stress strain cure	COb-5 CO-5	
7		04/03/202 2	1	True stress and strain	COb-5 CO-5	
8		04/03/202 2	1	Problems Solving	COb-5 CO-5	
9		07/03/202 2	1	Problems Solving	COb-5 CO-5	
10		08/03/202 2	1	Problems Solving	COb-5 CO-5	
11		10/03/202 2	1	Revision	COb-5 CO-5	
12		10/03/202 2	1	Revision	COb-5 CO-5	

Signature of HOD

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section: A		
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002		
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering		
Designation: Assistant Profe	ssor				
Lesson No: <u>1</u> Lesson Title: Introduction to Elasticity			Duration of Lesson: <u>1hr</u>		
INSTRUCTIONAL/LESSO	N OBJECTIVES:				
On completion of this lesson	the student shall be able to	:			
 Express about Elasticity concept Discuss the importance of Advanced Solid Mechanics in Civil Engineering 					
TEACHING AIDS : W TEACHING POINTS :	White board, marker				
 Elasticity Stress and Strain Relationship Civil Engineering Advanced Solid Mechanics 					
Assignment / Questions:					

1.Explain about importance of Advanced Solid Mechanics in Civil Engineering.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section: A		
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002		
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering		
Designation: Assistant Profe	ssor				
Lesson No: <u>2</u> Lesson Title: Forces in Elast	Duration of Lesson: <u>1hr</u> ic body				
INSTRUCTIONAL/LESSO	N OBJECTIVES:				
On completion of this lesson	the student shall be able to:				
 Discuss about Forces in Elastic body Distinguish between Surface and Body forces Difference between linear and non-linear elasticity 					
TEACHING AIDS : W TEACHING POINTS :	White board, marker				
 Linear Elasticity& Non-Linear Elasticity Isotropic & Homogeneous Body Forces Surface Forces 					
Assignment / Questions: 1. Distinguish between Surfa	ce and Body forces				

2. Explain about Linear and Non-linear elasticity

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A		
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002		
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering		
Designation: Assistant Profe	ssor				
Lesson No: <u>3</u> Lesson Title: <u>Components o</u>	<u>f Stress</u>	Duration of Lesson: <u>1hr</u>			
INSTRUCTIONAL/LESSO	N OBJECTIVES:				
On completion of this lesson	the student shall be able to:				
 Express about Stress cond Discuss about Component Distinguish between differ 	cept ts of stress ent clay minerals				
TEACHING AIDS : V TEACHING POINTS :	White board, marker				
 Stress Stress Tensor Components of Stress Cartesian Coordinate system Equilibrium 					
Assignment / Questions: 1.Explain about Components	s of Stress				

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section: A			
Course/Subject: Advanced S	olid Mechanics		Course Code: GR20D5002			
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering			
Designation: Assistant Profes	ssor					
Lesson No: <u>4</u>	Duration of Lesson: <u>1hr</u>					
Lesson Title: Components of	Stress					
INSTRUCTIONAL/LESSO	N OBJECTIVES:					
On completion of this lesson	the student shall be able to					
1. Obtain the Stress Compor	nents					
TEACHING AIDS : W	/hite board, marker					
Stress Symmetry Stress Tensor Equilibrium Equations						
Assignment / Questions: Discuss about Stress tensor and Stress symmetry						

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section: A			
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002			
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering			
Designation: Assistant Profe	ssor					
Lesson No: <u>5</u>			Duration of Lesson: <u>1hr</u>			
Lesson Title: Components o	<u>f Strain</u>					
INSTRUCTIONAL/LESSO	N OBJECTIVES:					
On completion of this lesson	the student shall be able to:					
 Distinguish between Stres Derive the Components of 	s and Strain Strain					
TEACHING AIDS : W TEACHING POINTS :	TEACHING AIDS : White board, marker TEACHING POINTS :					
• Strain						
• Strain Tensor						
Strain Components Equilibrium Equations						
Equilibrium Equations Strain Symmetry						
5 Strain Symmetry						
 Distinguish between Stress and Strain Derive the Components of Strain TEACHING AIDS : White board, marker TEACHING POINTS : Strain Strain Strain Tensor Strain Components Equilibrium Equations Strain Symmetry 						

1. Derive the Components of Strain

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profe	ssor		
Lesson No: <u>6</u>			Duration of Lesson: <u>1hr</u>
Lesson Title: Hooke's Law			
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lesson	the student shall be able to:		
1. Explain about Hooke's law	V		
2.Stress-Strain relationships	by Hooke's law		
TEACHING AIDS: WTEACHING POINTS:	Vhite board, marker		
 Hooke's law Pure shear 			
Poisson's Ratio			
Volumetric Strain			
Assignment / Questions: 1.Discuss about Hooke's law 2. Derive Stress- Strain relation	ionships by using Hooke's la	IW .	
			Signature of faculty

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: M.Tec	h Structural Engineering	Year: I	Section: A		
Course/Subject: Advanced S	olid Mechanics		Course Code: GR20D5002		
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering		
Designation: Assistant Profes	sor				
Lesson No: 7			Duration of Lesson: <u>1hr</u>		
Lesson Title: Derivation of H	ooke's Law				
INSTRUCTIONAL/LESSON	<u>NOBJECTIVES:</u>				
On completion of this lesson	the student shall be able to	:			
1. Drive the relationship betw	veen shear stress and strain	by Hooke'	s law		
2.Describe and find the Expre	ession for Lame's Constant				
TEACHING AIDS : W TEACHING POINTS :	hite board, marker				
 Shear Stress Bulk modulus Lame's Constant 					
Assignment / Questions: 1. Drive the relationship between shear stress and strain by Hooke's law 2. Describe and find the Expression for Lame's Constant					

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profe	ssor		
Lesson No: 8 Lesson Title: <u>Plain Stress and Strain</u>		Duration of Lesson: <u>1hr</u>	
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lesson the student shall be able to:			
 Distinguish between Plane Stress and Strain Find out stress at a point 			
TEACHING AIDS : W TEACHING POINTS :	White board, marker		
Plane stress			
• Plane Strain			

• Stress at a point

Assignment / Questions:

1. Distinguish between Plane Stress and Strain

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced	Solid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profe	ssor		
Lesson No: 9 Lesson Title: Stress on an Arbitrary plane			Duration of Lesson: <u>1hr</u>
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			
 Assess Stress on an Arbitrary plane Illustrate about Direction Cosines Drive the stresses on an Arbitrary plane TEACHING AIDS : White board, marker 			
TEACHING POINTS :			
Arbitrary planeDirection Cosines			

- Normal Component of stress
- Resultant Stress

Assignment / Questions: 1. Drive the stresses on an Arbitrary plane

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Tec	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced S	olid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profes	ssor			
Lesson No: <u>11</u> Lesson Title: Hydrostatic sta	te of stress, pure shear		Duration of Lesson: <u>1hr</u>	
INSTRUCTIONAL/LESSO	NOBJECTIVES:			
On completion of this lesson	the student shall be able to	:		
 Explain about Hydrostatic Stress and Pure shear condition ? Distinguish between Hydrostatic and Deviatoric Stress 				
TEACHING AIDS: White board, markerTEACHING POINTS:				
 Hydrostatic Stress Pure shear Deviatoric Stress 				
Assignment / Questions: 1. Distinguish between Hydrostatic and Deviatoric Stress 2. Find out Component of Hydrostatic and Deviatoric Stress?				

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profe	essor			
Lesson No: <u>12</u> Lesson Title: <u>St.Vanant's Pr</u>	inciple		Duration of Lesson: <u>1hr</u>	
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lessor	the student shall be able to:	:		
 Explain about importance Application of <u>St.Vanant's</u> 	of <u>St.Vanant's Principle</u> s Principle			
TEACHING AIDS : V TEACHING POINTS :	White board, marker			
 <u>St.Vanant's Princip</u> Stress Concentrati 	<u>ple</u> on			
Assignment / Questions: 1. Explain about importance	of <u>St.Vanant's Principle</u>			
Note: Mention for each ques	stion the relevant Objectives	and Outco	Signature of faculty	

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu	Dept.: Civil Engineering		
Designation: Assistant Profe	ssor			
Lesson No: <u>13</u> Lesson Title: Equations of Elasticity		Duration of Lesson: <u>1hr</u>		
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lesson	the student shall be able to:			
 Explain about Elastic Differentiate 2D and 	ity equations 3D equations			
TEACHING AIDS : W TEACHING POINTS :	Vhite board, marker			
• Equations of elastic	city			
• 2D Equilibrium equitation				
 Symmetry of Stres 	ses			

Assignment / Questions:

1. Differentiate 2D and 3D equations

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Tec	h Structural Engineering	Year: I	Section: A
Course/Subject: Advanced S	olid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profes	sor		
Lesson No: <u>14</u> Lesson Title: Equations of Equ <u>INSTRUCTIONAL/LESSON</u>	ilibrium <u>NOBJECTIVES:</u>		Duration of Lesson: <u>1hr</u>
On completion of this lesson 1. Derive Equilibrium ec	the student shall be able to: quations for 2D element in l	Rectangul	ar Coordinate System
TEACHING AIDS : W TEACHING POINTS :	hite board, marker		
 2D element Rectangular Coordi Equilibrium Equation 	inate system ons in 2D		

Assignment / Questions:

1. Derive Equilibrium equations for 2D element in Rectangular Coordinate System

Signature of faculty

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.	Fech Structural Engineering	Year: I	Section: A	
Course/Subject: Advance	d Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr.	K. Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Pro	ofessor			
Lesson No:15Duration of Lesson: <u>1hr</u> Lesson Title:3D Equations of Equilibrium				
INSTRUCTIONAL/LESS	ON OBJECTIVES:			
On completion of this less 1. Derive Equilibriun 2. Differentiate 2D an	on the student shall be able to n equations for 2D element in nd 3D elements	: Rectangul	lar Coordinate System	
TEACHING AIDS	: White board, marker			
IEACHING POINTS :				
• 3D Element				

- Rectangular Coordinate system
- Equilibrium Equations in 2D

Assignment / Questions:

1. Derive Equilibrium equations for 2D element in Rectangular Coordinate System

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced S	olid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profe	ssor		
Lesson No: 16 Duration of Lesson: <u>1hr</u> Lesson Title: Displacement Components			
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lesson	the student shall be able to	:	
 Explain about displacement components Drive the expression for Displacement component of Stress 			
TEACHING AIDS : White board, marker TEACHING POINTS :			
Displacement Stroip component			
 Poisson's ratio 			
Assignment / Questions: 1. Drive the expression for Displacement component of Stress			

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Tec	h Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced S	olid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profes	sor			
Lesson No:17Duration of Lesson:1hrLesson Title:Introduction to Polar Coordinate System				
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				
 Discuss about polar coordinate system Derive the Expressions for 2D equilibrium equations in Polar Coordinate system 				
TEACHING AIDS : White board, marker TEACHING POINTS :				
 Coordinate system Polar coordinate system Cartesian coordinate system 2D Equations in Polar coordinate system 				

Assignment / Questions:

- 1. Derive the Expressions for 2D equilibrium equations in Polar Coordinate system
- 2. Explain importance of Polar Coordinate system

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Tec	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced S	olid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profes	ssor		
Lesson No: <u>18</u> Lesson Title: 3D equations ir	ı polar system		Duration of Lesson: <u>1hr</u>
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lesson	the student shall be able to:		
 Discuss about polar c Derive the Expression 	oordinate system ns for 3D equilibrium equati	ons in Po	lar Coordinate system
TEACHING AIDS : W TEACHING POINTS :	Vhite board, marker		
Coordinate systemPolar coordinate sy	rstem		

- Cartesian coordinate system
- 3D Equations in Polar coordinate system

Assignment / Questions:

1. Derive the Expressions for 3D equilibrium equations in Polar Coordinate system

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profe	ssor			
Lesson No:19Duration of Lesson:1hrLesson Title:Stress function				
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lesson	the student shall be able to:			
 Explain about Stress Derive Airy's Stress f 	function function			
TEACHING AIDS : W T <u>EACHING POINTS :</u>	White board, marker			
• Stress function				
 Boundary condition 	ns			

• Airy's Stress function

Assignment / Questions:

1. Derive Airy's Stress function

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Tec	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced S	olid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profes	ssor		
Lesson No: <u>20</u> Lesson Title: Boundary condit	Duration of Lesson: <u>1hr</u> ions		
INSTRUCTIONAL/LESSO	NOBJECTIVES:		
On completion of this lesson	the student shall be able to:		
 Illustrate about bound Derive the boundary of 	lary conditions conditions for different stres	ss conditio	on of elements
TEACHING AIDS : W TEACHING POINTS :	/hite board, marker		
 Boundary Conditio Stress variation Cantilever beam Simply supported b 	ns Deam		
Assignment / Questions: 1. Derive the boundary	conditions for Cantilever be	eam with e	end load

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Tec	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced S	olid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profes	ssor		
Lesson No: <u>21</u> Lesson Title: Solutions by poly	Duration of Lesson: <u>1hr</u> nomials		
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lesson	the student shall be able to:		
 Discuss about polynomials Importance of polynomials Derive equilibrium equation 	ons for elements by using po	olynomials	3
TEACHING AIDS: WTEACHING POINTS:	/hite board, marker		
Polynomial			
Degree of freedom Types of polymorphile	al aquations		
 I ypes of polynomi pure shear 	arequations		
pure shear			

Assignment / Questions:

1. Derive equilibrium equations for Simply supported beam with center load by using polynomials

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profe	ssor			
Lesson No: <u>22</u> Lesson Title: Biharmonic Equ	Duration of Lesson: <u>1hr</u> ation			
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lesson	the student shall be able to:			
1. Derive the Biharmonic eq	uation			
TEACHING AIDS : W TEACHING POINTS :	White board, marker			
Biharmonic equati	on			
Stress condition				
Equilibrium equati	lons			
Moment of Inertia				

Assignment / Questions:

1. Derive the Biharmonic equation

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profe	ssor			
Lesson No: <u>24</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Lame's Ellipsoid				
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lesson	the student shall be able to:			
 Write about Lame's Ellips Derive the expression for 	oid stress on Ellipsoid			
TEACHING AIDS : W TEACHING POINTS :	White board, marker			
 Ellipsoid Lame's constant Equilibrium equati Moment of Inertia 	ions			
Assignment / Questions: 1. Derive the expression for	Lame's Ellipsoid			

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profe	ssor		
Lesson No: <u>25</u> Lesson Title: Analysis of Str <u>INSTRUCTIONAL/LESSO</u> On completion of this lesson 1. What are the different type 2. What are the assumptions	ress <u>N OBJECTIVES:</u> the student shall be able to: es of Stress analysis method in Analytical methods?	s?	Duration of Lesson: <u>1hr</u>
TEACHING AIDS : W TEACHING POINTS : • Stress analysis	Vhite board, marker		
 Analytical method Numerical method Boundary Condition 	s s ons		

Assignment / Questions:

1. What are the different types of Stress analysis methods?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.T	ech Structural Engineering	Year: I	Section: A
Course/Subject: Advanced	l Solid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. I	K. Veera Babu		Dept.: Civil Engineering
Designation: Assistant Pro	fessor		
Lesson No: <u>26</u>	Duration of Lesson: <u>1hr</u>		
Lesson Title: Principal Stre	ess		
INSTRUCTIONAL/LESS	ON OBJECTIVES: on the student shall be able to	:	
 Discuss about principle a Explain about principle p 	stress and principle plain? plane and failure mechanism?		
TEACHING AIDS : TEACHING POINTS :	White board, marker		
 Principal plane Principal stross 			
Failure mechanis	m		
Principle direction	ons		
L			
Assignment / Questions:			
1. Discuss about principle s	stress and principle plain?		

Signature of faculty

LESSON PLAN

Academic Year		: 2021-22			
Semester		: I			
Name of the Pro	ogram: M.Teo	ch Structural Engineering	Year: I	Section: A	
Course/Subject	: Advanced S	Solid Mechanics		Course Code: GR20D5002	
Name of the Fa	culty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: As	ssistant Profe	ssor			
Lesson No: 2	<u>28</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Pr	roblems on pr	inciple stress concept			
INSTRUCTION	NAL/LESSO	N OBJECTIVES:			
On completion	of this lesson	the student shall be able to	:		
 what are stress Solve some n 	ss invariants? numerical on s	stress invariants?			
TEACHING AI	IDS : V DINTS :	White board, marker			
Stress	s invariant				
• Trace	of matrix				
Chara Cofee	icteristic equa	ition			
Direc	tion cosines				
Assignment / Q	uestions:				

1. Write the procedure to find principle stress using Stress invariants?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Te	cch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K	. Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profe	essor			
Lesson No: <u>29</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Stress Transfo	rmation			
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lessor	n the student shall be able to	:		
 Explain about Stress trans Solve problems using stress 	sformation? ess transformation			
TEACHING AIDS : V TEACHING POINTS :	White board, marker			
Stress transformat	ion			
 Stress coordinates Transformation matrix 				
Resultant stress				
Assignment / Questions:				
1. Explain about Stress trans	sformation?			

Signature of faculty

LESSON PLAN

: 2021-22		
: I		
ch Structural Engineering	Year: I	Section: A
Solid Mechanics		Course Code: GR20D5002
Veera Babu		Dept.: Civil Engineering
ssor		
Duration of Lesson: <u>1hr</u>		
mation		
N OBJECTIVES:		
the student shall be able to:		
formation? in transformation		
White board, marker		
on		
ıtrix		
	: 2021-22 : I ch Structural Engineering Solid Mechanics Veera Babu ssor Duration of Lesson: <u>1hr</u> mation <u>N OBJECTIVES:</u> the student shall be able to: formation? in transformation White board, marker on	: 2021-22 : I ch Structural Engineering Year: I Solid Mechanics Veera Babu ssor Duration of Lesson: <u>1hr</u> mation <u>NOBJECTIVES:</u> the student shall be able to: formation? in transformation White board, marker on

Assignment / Questions:

1. Explain about Strain transformation and write the application of strain transformation?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Progr	am: M.Tech Structural Engineering	Year: I	Section: A	
Course/Subject: A	dvanced Solid Mechanics		Course Code: GR20D5002	
Name of the Facul	ty: Mr. K. Veera Babu		Dept.: Civil Engineering	
Designation: Assis	tant Professor			
Lesson No: $\underline{32}$	Duration of Lesson: <u>1hr</u>			
Lesson Title: Stres	s function problems			
INSTRUCTIONA	L/LESSON OBJECTIVES:			
On completion of t	this lesson the student shall be able to	:		
 Explain about st Explain about A 	ress function? .iry's Stress function?			
TEACHING AIDS TEACHING POIN	S : White board, marker			
Stress fu	nction			
Airy's sti Polynom	ress function ial solutions			
Compati	bility equation			
Biharmo	nic function			
Assignment / Oues	stions:			
1. Explain about A	iry's Stress function?			

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22				
Semester	: I				
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A		
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002		
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering		
Designation: Assistant Profe	ssor				
Lesson No: 34	Duration of Lesson: <u>1hr</u>				
Lesson Title: Stress Ellipsoid	1				
INSTRUCTIONAL/LESSO	N OBJECTIVES:				
On completion of this lesson	the student shall be able to:				
 Explain about Stress Ellip Write the importance of L 	soid ? ame's Ellipsoid?				
TEACHING AIDS : W TEACHING POINTS : • Stress Ellipsoid • Principal Stress	Vhite board, marker				
 Lames constant Boundary conditions Plane stress 					
Assignment / Questions: 1. Explain about Stress Ellip	soid/Lame's Ellipsoid ?				

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced	Solid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profe	essor		
Lesson No: <u>35</u>	Duration of Lesson: <u>1hr</u>		
Lesson Title: Pure bending of	of beam		
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lessor	the student shall be able to	:	
1. Derive the expression of b	pending moment for pure be	nding of b	eam
TEACHING AIDS : V TEACHING POINTS :	White board, marker		

- Pure bending
- Bending moment
- Deflections
- Plane stress condition

Assignment / Questions: 1. Derive the expression of bending moment for pure bending of beam

Signature of faculty

Academic Year

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Semester	: I				
Name of the Program: M.Te	ch Structural Engineering	Year: I	Sectio	n: A	
Course/Subject: Advanced S	Solid Mechanics		Course Code:	GR20D5002	
Name of the Faculty: Mr. K. Veera Babu			Dept.: Civil E	ngineering	
Designation: Assistant Profe	ssor				
Lesson No: 36	Duration of Lesson: <u>1hr</u>				
Lesson Title: Cantilever beam with end load					
INSTRUCTIONAL/LESSO	N OBJECTIVES:				
On completion of this lesson	the student shall be able to:				

1. Derive the expression of bending moment for Cantilever beam with end load

: 2021-22

TEACHING AIDS : White board, marker TEACHING POINTS :

- Cantilever
- Bending moment
- Deflections
- Plane stress condition

Assignment / Questions: 1. Derive the expression of bending moment for Cantilever beam with end load

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profe	ssor		
Lesson No: <u>37</u>	Duration of Lesson: <u>1hr</u>		
Lesson Title: Compatibility	equations		
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lesson	the student shall be able to:		
 Write about compatibility Derive Compatibility equation 	equations? ation		
TEACHING AIDS : W TEACHING POINTS :	Vhite board, marker		
 Equilibrium equati Compatibility equation 	on		
Bending moment			
 Deflections 			

• Plane stress condition

Assignment / Questions: 1. Derive Compatibility equation

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profe	ssor\			
Lesson No: <u>39</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Boundary Cond	litions			
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lesson	the student shall be able to:			
 Explain about Boundary c Use of boundary condition 	onditions ? Is			
TEACHING AIDS : W TEACHING POINTS :	Vhite board, marker			
 Equilibrium equati Compatibility equa Bending moment Boundary condition Plane stress condition 	on ition ns ion			

Assignment / Questions: 1. Explain and derive Boundary conditions ?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: M.Tec	h Structural Engineering	Year: I	Section: A			
Course/Subject: Advanced S	olid Mechanics		Course Code: GR20D5002			
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering			
Designation: Assistant Profes	ssor					
Lesson No: 40	Duration of Lesson: <u>1hr</u>					
Lesson Title: 3D Equations o	f polar system					
INSTRUCTIONAL/LESSON	NOBJECTIVES:					
On completion of this lesson	the student shall be able to:					
 Derive the Elasticity equili Derive the 3D Elasticity equility 	brium equations in polar co puilibrium equations in pola	ordinates' r coordina	? ites ?			
TEACHING AIDS: White board, markerTEACHING POINTS:						
 Polar coordinates Equations of equilibrium Elasticity 						
Assignment / Questions: 1. Derive the 3D Elasticity equilibrium equations in polar coordinates ?						

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced S	olid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profes	ssor		
Lesson No: 41	Duration of Lesson: <u>1hr</u>		
Lesson Title: Equations of di	splacements		
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lesson	the student shall be able to	:	
 Derive the Equations of di Explain about Equations o 	splacements in rectangular f displacements?	coordinate	system?
TEACHING AIDS : W TEACHING POINTS :	/hite board, marker		
 Displacements Equations of displa Rectangular coordi Strain 	cements nate		
Assignment / Questions: 1. Derive the Equations of di	splacements in rectangular	coordinate	system?

Signature of faculty

Signature of faculty

Academic Year

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

: 2021-22

Semester	: I			
Name of the Program: M.Teo	ch Structural Engineering	Year: I	Section	:: A
Course/Subject: Advanced S	Solid Mechanics		Course Code: (GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Eng	gineering
Designation: Assistant Profe	ssor			
Lesson No: 43	Duration of Lesson: <u>1hr</u>			
Lesson Title: Introduction to	Torsion			
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lesson	the student shall be able to:	:		
1. Write about Torsional equ	ations?			
TEACHING AIDS : W TEACHING POINTS :	White board, marker			
Torsion				

- Equilibrium equation
- Compatibility equation
- Plane stress condition

Assignment / Questions: 1. Write about Torsional equations?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced	Solid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profe	essor\		
Lesson No: <u>44</u>	Duration of Lesson: <u>1hr</u>		
Lesson Title: Basic Equation	15		
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lessor	the student shall be able to:		
1. Explain basic equations o	f torsion?		
TEACHING AIDS : N TEACHING POINTS :	White board, marker		
Torsion			
Compatibility equa	ation		
Bending moment			
Boundary condition	ons		

• Plane stress condition

Assignment / Questions: 1. Explain basic equations of torsion?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.	Tech Structural Engineering	Year: I	Section: A	
Course/Subject: Advance	ed Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr.	K. Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Pro	ofessor			
Lesson No: <u>49</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Membrane	Analogy			
INSTRUCTIONAL/LESS	SON OBJECTIVES:			
On completion of this less	son the student shall be able to:			
1. Explain about Membra	ne Analogy and Application?			
TEACHING AIDS TEACHING POINTS :	: White board, marker			
	1			

- Membrane Analogy
- St.Venant's method
- Equations of equilibrium
- Elasticity

Assignment / Questions: 1. Explain about Membrane Analogy and Application?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M	Tech Structural Engineering.	Year: I	Section: A	
Course/Subject: Advance	ed Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr.	K. Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Pr	rofessor			
Lesson No: <u>50</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Soap film c	oncept			
INSTRUCTIONAL/LES	SON OBJECTIVES:			
On completion of this les	son the student shall be able to	:		
1. Explain about Soap file	m concept and Application?			
TEACHING AIDS TEACHING POINTS	: White board, marker :			
Prandtls metho	d			

- St.Venant's method
- Equations of equilibrium
- Elasticity

Assignment / Questions: 1. Explain about Soap film concept and Application?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M	.Tech Structural Engineering	Year: I	Section: A
Course/Subject: Advanc	ed Solid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr	K. Veera Babu		Dept.: Civil Engineering
Designation: Assistant Pr	ofessor		
Lesson No: <u>51</u>	Duration of Lesson: <u>1hr</u>		
Lesson Title: Bending of	beam		
INSTRUCTIONAL/LES	SON OBJECTIVES:		
On completion of this les	son the student shall be able to	:	
1. Explain about Torsion	al Bending of beam?		
TEACHING AIDS TEACHING POINTS	: White board, marker :		
 St.Venant's me Equations of ec Elasticity 	thod Juilibrium		

Assignment / Questions: Explain about Torsional Bending of beam?

Signature of faculty

Academic Year

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

: 2021-22

Semester	: I			
Name of the Program: M.Te	ech Structural Engineering	Year: I	Sectio	on: A
Course/Subject: Advanced	Solid Mechanics		Course Code:	GR20D5002
Name of the Faculty: Mr. K	. Veera Babu		Dept.: Civil E	ngineering
Designation: Assistant Profe	essor			
Lesson No: <u>53</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Torsion equat	ion for circular c/s			
INSTRUCTIONAL/LESSC	N OBJECTIVES:			
On completion of this lesso	n the student shall be able to:	:		
1. Derive Torsion equation	for circular c/s?			
TEACHING AIDS : ` TEACHING POINTS :	White board, marker			

- Prandtls method
- St.Venant's method
- Equations of equilibrium
- Elasticity

Assignment / Questions: 1. Derive Torsion equation for circular c/s?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profe	ssor			
Lesson No: <u>54</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Torsion equation	on for Elliptical c/s			
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lesson	the student shall be able to:			
1. Derive Torsion equation f	or Elliptical c/s?			
TEACHING AIDS : W TEACHING POINTS :	Vhite board, marker			
Torsion equation for the second	or Elliptical c/s			
 St. Venant's method Equations of equility 	a ibrium			
Elasticity				

Assignment / Questions: 1. Derive Torsion equation for Elliptical c/s?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering
Designation: Assistant Profe	ssor		
Lesson No: <u>55</u>	Duration of Lesson: <u>1hr</u>		
Lesson Title: Introduction to	Plasticity		
INSTRUCTIONAL/LESSO	N OBJECTIVES:		
On completion of this lesson	the student shall be able to:		
 Explain about Plasticity co Write applications of Plast 	oncept? ticity?		
TEACHING AIDS : W TEACHING POINTS :	Vhite board, marker		
 Plasticity Equations of equilities Elasticity	brium		

Assignment / Questions: 1. Explain about Plasticity concept?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profe	ssor			
Lesson No: <u>56</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Yield criteria				
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lesson	the student shall be able to:			
1. Explain about Yield criteria	1?			
TEACHING AIDS : W TEACHING POINTS :	White board, marker			
Plasticity Viold Critoria				

- Yield Criteria
- Equations of equilibrium
- Elasticity

Assignment / Questions: 1. Explain about Yield criteria?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profe	essor			
Lesson No: <u>58</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Methods of Fail	ure			
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lesson	the student shall be able to			
 Explain about Plasticity c Write about Methods of Fa 	oncept? ilure?			
TEACHING AIDS : N TEACHING POINTS :	White board, marker			
 Plasticity Methods of Failure Yield Criteria Equations of equil Elasticity 	ibrium			

Assignment / Questions: 1. Explain about Plasticity concept?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.	Tech Structural Engineering	Year: I	Section: A	
Course/Subject: Advance	ed Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr.	K. Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Pro	ofessor			
Lesson No: <u>59</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Strain Harder	ning			
INSTRUCTIONAL/LESS	SON OBJECTIVES:			
On completion of this less	son the student shall be able to			
1.Explain about Strain Ha 2.Explain about Yield crite	rdening? ria?			
TEACHING AIDS TEACHING POINTS :	: White board, marker			
 Plasticity Strain Hardening Yield Criteria Equations of equations of equations 	uilibrium			
Assignment / Questions: 1. Explain bout Strain Ha	rdening?			

Note: Mention for each question the relevant Objectives and Outcomes Nos.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced S	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profe	ssor			
Lesson No: <u>60</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Idealized stress	strain cure			
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lesson	the student shall be able to:			
1. Explain Idealized stress stra	ain cure ?			
TEACHING AIDS : N TEACHING POINTS :	White board, marker			
 Plasticity Stress and Strain Methods of Failure 				
 Yield Criteria Equations of equil 	ibrium			

• Elasticity

Assignment / Questions: 1. Explain about Plasticity concept?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			
Semester	: I			
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A	
Course/Subject: Advanced	Solid Mechanics		Course Code: GR20D5002	
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil Engineering	
Designation: Assistant Profe	essor			
Lesson No: <u>61</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: True stress and	strain			
INSTRUCTIONAL/LESSO	N OBJECTIVES:			
On completion of this lessor	the student shall be able to:			
1. Write about True stress and 2. Explain about Strain Hard	strain? lening?			
TEACHING AIDS : N TEACHING POINTS :	White board, marker			
 Plasticity Strain Hardening Yield Criteria Equations of equil Elasticity 	ibrium			
Assignment / Questions: 1. Write about True stress and	strain?			

Signature of faculty

Academic Year

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

: 2021-22

Semester	: I			
Name of the Program: M.Tec	h Structural Engineering	Year: I	Sectio	n: A
Course/Subject: Advanced S	olid Mechanics		Course Code:	GR20D5002
Name of the Faculty: Mr. K.	Veera Babu		Dept.: Civil E	ngineering
Designation: Assistant Profes	ssor			
Lesson No: <u>62</u>	Duration of Lesson: <u>1hr</u>			
Lesson Title: Plastic Stress-St	train Relations			
INSTRUCTIONAL/LESSON	NOBJECTIVES:			
On completion of this lesson	the student shall be able to:			
1. Write about stress and strain	relationships?			
TEACHING AIDS : W TEACHING POINTS :	hite board, marker			

- Plasticity
- Strain Hardening
- Stress and Strain
- Equations of equilibrium
- Elasticity

Assignment / Questions: 1. Write about stress and strain relationships?

Signature of faculty

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET - 1

Academic Year	: 2021-22		
Semester	: I		
Name of the Program	: M.Tech Structural Engineering	Year: I	Section: A
Course/Subject: Adv	anced Solid Mechanics		Course Code: GR20D5002
Name of the Faculty:	Mr. K. Veera Babu		Dept.: Civil Engineering
Designation: Assistan	nt Professor		
 This Tutorial corresp 1. Q1. Answer the a) What are b b) State of Pu c) What is str d) Explain the 	onds to Unit No I following body forces and surface forces? ure Shear ress and strain tensor?		
e) What are	Lame's constants?		
2. Define principa	l stress and the principal planes		
3. Explain Hooke	's law		
4. Explain Saint-V	enant's Principe.		

Objective Nos.: 1 Outcome Nos.: 1

Signature of HOD

Signature of faculty

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET - 2

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: M.Te	ch Structural Engineering	Year: I	Section: A
Course/Subject: Advanced Solid Mechanics			Course Code: GR20D5002
Name of the Faculty: Mr. K. Veera Babu			Dept.: Civil Engineering
Designation: Assistant Professor			
This Tutorial corresponds to	Unit No II		

- 1. Develop the differential equations of equilibrium for 2-D and 3-D problems in elasticity using Cartesian coordinate system with detailed Illustrations.
- 2. Explain the Strain components in polar coordinates.
- 3. Explain plane stress and plane strain cases
- 4. Give the basic equations of equilibrium
- **5.** Derive Biharmonic equation in terms of Airy's stress function and State Airy's stress function for beam subjected to pure bending

\

Objective Nos.: 2 Outcome Nos.: 2

Signature of HOD

Signature of faculty

TUTORIAL SHEET - 3

Academic Year : 2021-22

Semester

Name of the Program: M.Tech Structural Engineering	Year: I	Section: A			
Course/Subject: Advanced Solid Mechanics		Course Code: GR20D5002			
Name of the Faculty: Mr. K. Veera Babu		Dept.: Civil Engineering			

Designation: Assistant Professor

This Tutorial corresponds to Unit No. - III

1. The state of stress at a point with respect to x,y,z system is

: I

10 5 -15,

5 10 20 kN/sq.m.

-15 20 25

Determine the stresses relative to x^1 , y^1 , z^1 coordinate systems obtained by a rotation through 45^0 about Z axis.

2. The three stress components at a point are given by

- 100 50 60
- 50 80 100 kPa.
- 60 100 60 ✓Calculate the principal stresses and their directions and maximum shear stress ?

3. Derive the compatibility equations for a 3-D system

Objective Nos.: 3 Outcome Nos.: 3

Signature of HOD

TUTORIAL SHEET - 4

Academic Year	: 2021-22
Semester	: I

Name of the Program: M.Tech Structural Engineering Year: I Section: A

Course/Subject: Advanced Solid Mechanics

. i Section

Course Code: GR20D5002

Name of the Faculty: Mr. K. Veera Babu

Dept.: Civil Engineering

Designation: Assistant Professor

This Tutorial corresponds to Unit No. - IV

- 1. Write a Short note on Strain rosette
- 2. Derive the expression of bending moment for pure bending of beam
- 3. Explain Saint Venants semi inverse method for evaluation of torsion in prismatic shafts. Hence calculate torsional moment and shear stresses in terms of stress function.
- 4. Derive Prandtl's torsion Stress function method for Prismatic bars?
- 5. Derive the saint venants solution to the problem of Torsion in straight bars and apply this solution to a bar with circular cross section.

Objective Nos.: 4 Outcome Nos.: 4

Signature of HOD

TUTORIAL SHEET - 5

Acade	mic Ye	ar : 2	2021-22			
Semes	ster	: I				
Name of the Program: M.Tech Structural Engine			Structural Engineering	Year: I	Sectio	on: A
Course/Subject: Advanced Solid Mechanics					Course Code:	GR20D5002
Name of the Faculty: Mr. K. Veera Babu					Dept.: Civil E	ngineering
Desig	nation: A	Assistant Professor	r			
This T	utorial	corresponds to Un	it No V			
1.	Explai	n in detail the diff	erent theories of failure	and write	yield criterion f	or each.
2.	Explai	n Mohr's theory o	f failure			
3.	State a	and explain the ass	umptions of Plasticity			
4.	Write	the Significance of	f the theories of failures	?		
5.	Explai	n briefly about				
	a.	Factor of safety i	n design			
	b.	yield Criteria				
	c.	Plasticity				
	d.	Strain Hardening				
	e.	Nominal and Tru	e Stress and Strain			
	f.	Resilience and to	ughness			

Objective Nos.: 5 Outcome Nos.: 5

Signature of HOD

Academic Year

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENT SHEET – 1

Semes	ter : I						
Name	of the Program: M.Tech Structural Engineering	Year: I	Section: A				
Course/Subject: Advanced Solid Mechanics Course Code: GR2							
Name of the Faculty: Mr. K. Veera Babu Dept.: Civil Engineering							
Desigr	Designation: Assistant Professor						
This A	This Assignment corresponds to Unit No I & Lesson						
1.	Define Stress and Strain						
2.	2. explain stress & strain components.						
3.	3. Body forces and surface forces						
4.	4. Explain about Linear and Non-Linear elasticity with examples						

5. Explain Saint-Venant's Principe and Applications?

: 2021-22

6. What do you understand by State of Pure Shear, Hydrostatic and Deviatoric state of stress?

Objective Nos.: 1 Outcome Nos.: 1

Signature of HOD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENT SHEET – 2

Academic Year : 2021-22

Semester

Name of the Program: M.Tech Structural Engineering Year: I Section: A

Course/Subject: Advanced Solid Mechanics

Name of the Faculty: Mr. K. Veera Babu

Designation: Assistant Professor

This Assignment corresponds to Unit No. - II & Lesson

1. What are 2 dimensional rectangular coordinates.

: I

- Develop the differential equations of equilibrium for 2-D and 3-D problems in elasticity using Cartesian coordinate system with detailed Illustrations.
- 3. The state of stress at a point with respect to x,y,z system is
 - $\begin{pmatrix} 10 & 5 & -15 \\ 5 & 10 & 20 \end{pmatrix}$ kN/sq.m.
 - -15 20 25

Determine the stresses relative to x^1 , y^1 , z^1 coordinate systems obtained by a rotation through 45^0 about Z axis.

4. Derive the state of stress on an Oblique plane ?

Objective Nos.:2 Outcome Nos.: 2

Signature of HOD

Signature of faculty

Course Code: GR20D5002

Dept.: Civil Engineering

ASSIGNMENT SHEET – 3

Academic	Year	: 2021-	22

Semester

Name of the Program: M.Tech Structural Engineering Year: I Section: A

Course/Subject: Advanced Solid Mechanics

Name of the Faculty: Mr. K. Veera Babu

Course Code: GR20D5002

Dept.: Civil Engineering

Designation: Assistant Professor

This Assignment corresponds to Unit No. - III & Lesson

: I

- Derive Biharmonic equation in terms of Airy's stress function and State Airy's stress function for beam subjected to pure bending
- 2. The Cartesian stress components at a point are given blow $\sigma_x=150$ MPa, $\sigma_y=-100$ MPa, $\sigma_z=200$ MPa, $\tau_{xy}=\tau_{yx}=75$ MPa, $\tau_{yz}=\tau_{zy}=30$ MPa, $\tau_{zx}=\tau_{xz}=-50$ MPa, Find stress resultant at Q on a plane passing through Q where normal is coincident with the x-axis, also find normal stress (σ_n) and normal shear stress (τ_n)
- 3. Derive the state of stress on an Octahedral planes ?
- 4. Derive the compatibility equations for a 3-D system

Objective Nos.: 3 Outcome Nos.: 3

Signature of HOD

ASSIGNMENT SHEET – 4

Academic Year : 2021-22

Semester

Name of the Program: M.Tech Structural Engineering Year: I Section: A

Course/Subject: Advanced Solid Mechanics

Course Code: GR20D5002

Name of the Faculty: Mr. K. Veera Babu

Dept.: Civil Engineering

Designation: Assistant Professor

This Assignment corresponds to Unit No. - IV & Lesson

: I

- 1. Explain Saint Venants semi inverse method for evaluation of torsion in prismatic shafts. Hence calculate torsional moment and shear stresses in terms of stress function.
- 2. Derive Prandtl's torsion Stress function method for Prismatic bars?
- 3. Derive the saint venants solution to the problem of Torsion in straight bars and apply this solution to a bar with circular cross section.
- 4. Derive the saint venants solution to the problem of Torsion in straight bars and apply this solution to a bar with Elliptical cross section.

Explain membrane analogy for obtaining behavior of non-circular shafts under torsion Objective Nos.: 4 Outcome Nos.: 4

Signature of HOD

ASSIGNMENT SHEET – 5

Academic Year : 2021-22

Semester

Name of the Program: M.Tech Structural Engineering Year: I Section: A

Course/Subject: Advanced Solid Mechanics

Name of the Faculty: Mr. K. Veera Babu

Course Code: GR20D5002

_ _ .

Dept.: Civil Engineering

Designation: Assistant Professor

This Assignment corresponds to Unit No. - V & Lesson

: I

- 1. Explain in detail the different theories of failure and write yield criterion for each.
- 2. Explain Mohr's theory of failure
- 3. State and explain the assumptions of Plasticity
- 4. Write the Significance of the theories of failures?
- 5. Explain briefly about
 - g. Factor of safety in design
 - h. yield Criteria
 - i. Plasticity
 - j. Strain Hardening
 - k. Nominal and True Stress and Strain
 - l. Resilience and toughness

Objective Nos.: 5 Outcome Nos.: 5

Signature of HOD

EVALUATION STRATEGY

Academic Year	: 2021-22
Academic Year	: 2021-22

Semester

Name of the Program: M.Tech Structural Engineering Year: I

: I

Course/Subject: Advanced Solid Mechanics

Course Code: GR20D5002

Name of the Faculty: Mr. K. Veera Babu

Section: A

Dept.: Civil Engineering

Designation: Assistant Professor

1. TARGET:

A) Percentage for pass: 90%

b) Percentage of class:

Total Strength: 21

S.No.	Class / Division	No. of Students
1	First Class with distinction	12
2	First Class	5
3	Pass Class	2

2. COURSE PLAN& CONTENT DELIVERY

S.No	Plan	Brief Description
1	Practice classes	62 Theory classes for Section A
3	Assignments	Assignments for solving numerical problems

3. METHOD OF EVALUATION

3.1 Continuous Assessment Examinations

- Assignments: Assignments to assess the knowledge of the student on the basics and concepts and Numerical Analysis in Advanced Solid Mechanics
- Seminars: To assess the knowledge of the student in Advanced Solid Mechanics.
- Quiz: To assess the knowledge of the student in various concepts and basics of Advanced Solid Mechanics
- Internal Examination: Internal Examinations to assess their overall knowledge in Advanced Solid Mechanics

3.2. Semester/End Examination

To test their abilities in the course Advanced Solid Mechanics and to approve their abilities learnt during the same.

4. List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this Semester.

Signature of HOD

MAPPING

GR20D5002/ Advanced Solid Mechanics		Course Outcomes						
Course Objectives	1	1 2 3 4 5						
1	X							
2		X						
3			X					
4				X				
5					X			

Assessments

- 1. Assignment 2. Internal Examination 3. External Examination
- 4. Practical Projects 5. Viva

GR20D5002/ Advanced Solid Mechanics	Course Outcomes						
Assessments	1 2 3 4						
1	X	X	X	Х	Х		
2	X	X	X	Х	Х		
3	X	X	X	Х	Х		
4							
5							

GR20D5002/ Advanced Solid Mechanics	Course Objectives					
Assessments	1	2	3	4	5	
1	X	Х	Х	X	X	
2	X	Х	Х	Х	Х	
3	X	X	Х	Х	Х	
4						
5						

CO-PO Mappings:

GR20D5002/ Advanced Solid Mechanics						
Course Outcomes	Α	В	С	D	Е	F
Have a good understanding of the theory, concepts, principles and governing equations of Elasticity principles.		М	Н	М		
Develop equations of equilibrium and draw relations among stress, strain and displacement and utilize the equilibrium equations, compatibility equations and various boundary conditions to analyze elastic problems.			Н		Н	М
Gain the understating of three-dimensional problems of elasticity in Cartesian coordinates system ad able to determine principal stresses and planes of 3D problems.	М		Н		Н	М
Apply the principles of elasticity to solve torsional problems in prismatic bars and tubes.	М		Н		М	М

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

RUBRIC TEMPLATE

Academic Year: 2021-22Semester: IName of the Program: M.Tech Structural Engineering
Course/Subject: Advanced Solid Mechanics

Year: I Section: A Course Code: GR20D5002

Dept.: Civil Engineering

Name of the Faculty: Mr. K. Veera Babu Designation: Assistant Professor

Objective: To learn basics and concepts of Advanced Solid Mechanics. Student Outcome: Behavioural studies or analyze the structural elements and study different parameters such as forces, bending moments, shear forces, stresses, strains, Cartesian Coordinate system and Polar Coordinate System in 2D and 3D, Torsion on elements and Plasticity etc.,

			Beginning	Developing	Reflecting Development	Accomplished	Exemplary	Score
S. No	Name of the Student	Performance Criteria	1	2	3	4	5	
		Analysis of Stress and Strain	Low level of knowledge on Elasticity and Stress and Strain	Able to discuss the Elasticity and Stress and Strain	Ability to explain the application Elasticity and Stress and Strain	Full knowledge on Elasticity and Stress and Strain	Analyzing and implement in structures	5
1	21241D 2007	The level of knowledge on types Coordinate Systems i.e Cartesian and Polar	Low level of knowledge on types Coordinate Systems i.e Cartesian and Polar	Able to discuss types of Coordinat e Systems i.e Cartesian and Polar	Ability to explain types Coordinate Systems i.e Cartesian and Polar	Full knowledge on types Coordinate Systems i.e Cartesian and Polar	Analysing and application of knowledge on types Coordinate Systems i.e Cartesian and Polar	4
		The level of knowledge to analyse various engineering Elements and Plasticity	Low level of knowledge to analyse various engineering Elements and Plasticity	Ability to discuss and to study the various engineeri ng Elements and Plasticity	Ability to explain various engineering structures.	Full knowledge on various engineering structures.	Analysing and implementing the knowledge of various engineering Elements and Plasticity	3
				•			Average Score	4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE COMPLETION STATUS

Academic Year : 2021-22

Semester

Name of the Program: M.Tech Structural Engineering Year: I See

: I

Course/Subject: Advanced Solid Mechanics

Section: A

Course Code: GR20D5002

Dept.: Civil Engineering

Name of the Faculty: Mr. K. Veera Babu

Designation: Assistant Professor

Actual Date of Completion & Remarks, if any

Units	Remarks	Objectives Achieved	Outcomes Achieved
Unit I	02-12-2021 Unit covered on time	1	1
Unit II	27-12-2021 Unit covered on time	2	2
Unit III	25-01-2022 Unit covered on time	3	3
Unit IV	17-02-2022 Unit covered on time	4	4
Unit V	10-03-2022 Unit covered on time	5	5

Signature of HOD

Signature of faculty

Date: Date: Date: Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.

M.TechI Year I Semester Regular Examinations[Modal Paper]

Advanced Solid Mechanics (M.Tech. Structural Engineering) Max Marks: 70

Time: 3 hours

< Note: Type the questions in the given format only, Times New Roman font , size 12 > 12

Instructions:

- 1. Question paper comprises of Part-A and Part-B
- 2. **Part-A** (for 20 marks) must be answered at one place in the answer book.
- 3. **Part-B** (for 50 marks) consists of **five questions with internal choice,** answer all questions.

PART – A (Answer ALL questions. All questions carry equal marks) 2 * 10 = 20 Marks

1. a.	What are plane strain & plane stress problems? (CO1)	[2]
b.	Define Stress and Strain tensors?(CO1)	[2]
c.	Explain Saint-Venant's Principle.(CO2)	[2]
d.	What is strain rosette?(CO2)	[2]
e.	What are stress invariants?(CO3)	[2]
f.	What is uniqueness theorem?(CO4)	[2]
g.	Define warping in torsion.(CO5)	[2]
h.	Explain Soap film analogy method.(CO6)	[2]
i.	What is (a) Plastic flow (b) Yield surface?(CO7)	[2]
ј.	Explain the Bauschinger effect on steel?(CO7)	[2]
	PART – B	
	(Answer ALL questions All questions carry equal marks)	
	10 * 5 = 50 Marke	
	$10 \ 0 = 50$ Marks	
2.	(a) The state of stress at a point is given by	[10]
	$\sigma_{XX} = 10, \tau_{XY} = 8$	
	$\sigma_{YY} = -6 \ , \ \tau_{YZ} = 0$	
	$\sigma_{ZZ} = 4, \ \tau_{ZX} = 0$	
	Consider another set of co-ordinate axis X^1 , Y^1 , Z^1 in which Z^1 coincides with	
	Z-axis and X^1 is rotated by 30° anti-clock wise from the X axis. Determine the stress components in the new system?(CO1)	
	(b) Develop the differential equations of equilibrium for the case of 2-D problem in elasticity using polar coordinate system.(CO3)	

	OR						
3.	(a) Derive strain displacement relations.(CO1)(b) Obtain the Cauchy's Stress Formulae. (CO2)	[10]					
4.	 4. (a) Derive Airy's stress function for beam subjected to pure bending.(CO2) (b) Derive the relation between the Lame's coefficients and Elastic Constants.(CO2) 						
	OR						
5.	 (a) Derive Bi-harmonic equation in terms of Airy's stress function.(CO2) (b)The three stress components at a point are given by (100 50 60) 	[10]					
	50801006010060						
6.	 (a) Write the equation of equilibrium for a 3-D problem in elasticity in terms of displacements.(CO2) (b) How does a circular hole effect the stress distribution in a plate under uniform stress distribution.Explain and sketch the distribution?(CO4) 	[10]					
	OR						
7.	 (a) Derive the differential equations of equilibrium for the case of 3-D problem in elasticity(CO2) (b) Derive the compatibility equations for a 2 D system (CO2) 	[10]					
8.	Develop the differential equation for bending of a cantilever by terminal loads with (i) circular section and (ii) with elliptical section.(CO6)	[10]					
	OR						
9.	Discuss about Saint Venant's Semi Inverse Method for prismatic bars under torsion and arrive at shear stress and torque values in terms of stress function \emptyset . Apply the method to a bar of elliptic c/s to obtain distribution of shear stress and warping displacement in c/s.(CO5)	[10]					
10.	Explain in detail the different theories of failure and write yield criterion for each. (CO7)	[10]					
	OR	1					
11.	 (a) State and explain the assumptions of Plasticity(CO7) (b) Explain Mohr's theory of failure(CO7) 	[10]					

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Civil Engineering I M.Tech. I Semester MID I EXAMINATION February 2022

ADVANCED SOLID MECHANICS (GR20D5002)

Time:75 Minutes Date of examina Answer all questions	ation 07-02202	22(AN) Max. Marks : 15 Marks 3x5=15Marks
Name:	Roll No.	
 Answer the following a) What are body forces and surface for b) Give the relation between elastic co c) What is stress and strain tensor? d) Explain the Plane Stress and Plane S e) What are Lame's constants? 	orces? nstants. train.	[CO1][BL2]
,	OR	
2. Develop the differential equations of equations coordinate system with detailed	uilibrium for 2- d Illustrations.	D and 3-D problems in elasticity using [CO1][BL2]
3. Derive the state of stress on an Oblique p	olane ? OR	[CO2][BL3]
4. The three stress components at a point ar $ \begin{pmatrix} 100 & 50 & 60 \\ 50 & 80 & 100 \\ stress ? \\ 60 & 100 & 60 \end{pmatrix} $ kPa. Calculate the pr	e given by incipal stresses a	[CO2][BL3] and their directions and maximum shear
5. The state of stress at a point with respect $\begin{pmatrix} 10 & 5 & -15 \\ 5 & 10 & 20 \\ -15 & 20 & 25 \end{pmatrix}$ kN/sq.m.	t to x,y,z system	is [CO3][BL4]
Determine the stresses relative to x^1 , y^1 , z about Z axis.	z ¹ coordinate sys	stems obtained by a rotation through 45 ^o
	OR	
 Derive Biharmonic equation in terms of beam subjected to pure bending 	Airy's stress fund	ction and State Airy's stress function for [CO3][BL4]

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Civil Engineering

I M.Tech. I Semester MID I EXAMINATION February 2022

ADVANCED SOLID MECHANICS (GR20D5002)

							10x1	1/2=1	5Ma	rk
lame:	RollNo.									
 Young's modulus is defined as a) Volumetric stress and v b) Lateral stress and latera c) Longitudinal stress and 	the ratio of olumetric strain Il strain longitudinal strain	n						()	
d) Shear stress to shear str When a body is subjected to a stress (τxy), the minimum norm a) ($\sigma x/2$) + ($1/2$) × $\sqrt{(\sigma x^2 - b)}$ b) ($\sigma x/2$) - ($1/2$) × $\sqrt{(\sigma x^2 + c)}$ c) ($\sigma x/2$) + ($1/2$) × $\sqrt{(\sigma x^2 - d)}$ d) ($1/2$) × $\sqrt{(\sigma x^2 + 4 \tau^2 xy)}$	rain direct tensile stres nal stress is + 4 τ ² xy) - 4 τ ² xy) - 4 τ ² xy)	es (ox) in	n one p	olane	accom	panie	ed by	a sim (nple s	she
The materials which have the s a) Isotropic b) Brittle	ame elastic prope c) Homogenou	rties in a s	all dire d) Hare	ctions d	s are c	alled		()	
 As the elastic limit reaches, ten a) Increases more rapidly c) Increases in proportion to 	o the stress	b) Decr	eases r eases i	nore i	apidly	, 1 to tl	ne str))	
5. What the number that measure	es an object's resis	stance to	being	g defo	rmed	elasti	ically	when	n stre	ess
applied to it?								()	
a) Elastic modulus b) Plas	stic modulus c) Po	oisson's	ratio	d) St	ess m	odulu	15			
5. Find the strain of a brass rod of	of length 100mm	which is	s subje	cted	o a te	nsile	load	of 50	kN v	whe
the extension of rod is equal to	0.1mm?							()	
a) 0.01 b) 0.	001	c) 0.05			d) ().005				
		to atmai	n nroa	hood	in n	opor	tional	to 1	the s	tre
7. The law which states that w	within elastic lim	its strai	n prot	luceu	is pi	· I.)	
7. The law which states that w producing it is known as	vithin elastic lim	its strai	n prov	luceu	is pi	· r ·		(
 7. The law which states that we producing it is known as a) Bernoulli's law b) He had been been been been been been been bee	ooke's law	c) Stres	s law	luceu	d)]	Poisso	on's l	(aw		
 7. The law which states that we producing it is known as	ooke's law	c) Stres	s law	luceu	d)]	Poisso	on's l	(aw ()	
 7. The law which states that we producing it is known as	ooke's law nal stress value wi qual to shear	c) Stres ll c) zero	s law	luced	d)] d)]	Poisso	on's l	(aw ()	
 7. The law which states that we producing it is known as	ooke's law nal stress value wi jual to shear D system? rmal stress and the ear stress and the eral strain and the	c) Stres ll c) zero e corresp correspo corresp	s law oondin onding onding	g stra strain	d)] d)] d)] s	Poisso	on's l	(aw ()	

GOKARAJU RANGARAJU

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Civil Engineering

I M.Tech. I Semester MID II EXAMINATION March 2022

ADVANCED SOLID MECHANICS (GR20D5002)

Time:75 MinutesDate of Examination: 14-03-2022 (AN)

Max. Marks : 15 Marks

Answer all questions

3 x 5 = 15 Marks

Question No.		Blooms Levels*	Course Outcome
1	Develop the expression of bending moment for pure bending of beam with near sketch	BL3	CO3
2	Describe in detail a). Strain rosette b). Stress at a point in Polar coordinate system	BL1	CO3
3	Develop a torsion equation for prismatic shafts by using Saint Venants semi inverse method with neat sketch.	BL3	CO4
	OR		
4	Derive the saint venants solution to the problem of Torsion in straight bars and apply this solution to a bar with circular cross section.	BL6	CO4
5	Classify the different theories of failure and write yield criterion for each.	BL4	CO5
	OR		
6	 Explain briefly about a. Factor of safety in design b. yield Criteria c. Strain Hardening d. Nominal and True Stress and Strain e. Resilience and toughness 	BL2	CO5

	Grace States State		
	GOKARAJU RANGARAJU		
	INSTITUTE OF ENGINEERING AND TECHNOLOGY		
	Department of Civil Engineering		
	I M.Tech. I Semester MID II EXAMINATION March 2022		
	ADVANCED SOLID MECHANICS (GR20D5002)		
	Time: 15 Minutes Date of Examination: 14-03-2022 (AN) Max. Marks : 5 Marks		
	Answer all questions $10 \ge 1/2 = 5$ Mark	s	
ame:	Roll No.		
. Fa	ctor of safety is	()
	e) Tensile stress / Permissible stress		
	f) Compressive stress / Ultimate stress		
	g) Ultimate stress / Permissible stress		
	h) Ultimate stress / Shear stress		
2.	A brittle material has	()
	e) No elastic zone c) No plastic zone		
	f) Large plastic zone d) None of these		
3.	The materials which have the same elastic properties in all directions_	()
	a) Isotropic b) Brittle c) Homogenous d) Hard		
4.	Torsional rigidity of a shaft is defined as	()
	a) G/J b) GJ c) TJ d) T/J		
5.	When a shaft is subjected to a twisting moment, every cross-section of the shaft		
	will be under	()
	a) Tensile stress b) Compressive stress		
_	c) Shear stress d) None of the above		
6.	The polar moment of inertia of a solid circular shaft of diameter (d) is	()
_	a) $\pi d^2 / 16$ b) $\pi d^3 / 32$ c) $\pi d^4 / 32$ d) $\pi d^4 / 64$		
7.	The relationship between the true strain and engineering strain is given as() $1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 $		
0	a) $\varepsilon = e$ b) $\varepsilon = \ln(e)$ c) $\varepsilon = \ln(e+1)$ d) $\varepsilon = \ln(1/(1+e))$	(``
8.	At the state of pure shear, normal stress value will	()
0	a) maximum b) equal to snear c) zero d) None	(``
9.	Assumptions of Plastic theory	()
	a) Material is isotropic b) There is no Deveching on effect		
	b) There is no Bauschinger effect		
	d) All of the above		
10	u) All of the above The relationship between Veyne's modulus (E). Dully modulus (K) and		
10.	Poisson's ratio (μ) is given by	()
		()

M.Tech StructuralEngg. I yr-I Sem- GR20 2021-22										
		ADVANCED SOLID MECHANICSGR20D5002 (I	MID-I)							
S.No	Roll No	Name of Student	Maximum Marks (20 M)							
1	21241D2001	ATKAPURAM PRASHANTH	19							
2	21241D2002	BANDI SRI RAM GOPAL	19							
3	21241D2003	CHALLA MADHAVI	15							
4	21241D2004	PAMMI DIVYA	14							
5	21241D2005	DUMMA UMESH KUMAR	16							
6	21241D2006	K LATHASREE	14							
7	21241D2007	MARIYALA VAISHNAVI	20							
8	21241D2008	MAVOORI PRANAV	15							
9	21241D2009	MITTAPALLI NAGA ASHWINI	18							
10	21241D2010	RAVULA VENKATA SURAJ REDD	12							
11	21241D2011	REPATI MOHAN BABU	16							
12	21241D2012	ANDHYA CHERUKU	19							
13	21241D2013	SHAIK FEROZ	15							
14	21241D2014	K SAI CHANDRA	19							
15	21241D2015	THOTA HARSHAVARDHAN	16							
16	21241D2016	ARIKUPPALA LALITHA	17							
17	21241D2017	AMBA RAMA GNANENDRA SAI	16							
18	21241D2018	SAI YENUMALA DEVESH GOUD	13							
19	21241D2019	RASHANTH KUMAR	11							
20	21241D2020	BAVANDLAPELLI THARUN TEJA	12							
21	21241D2021	GNITISH KUMAR	14							

M.Tech Structural Engg. I yr-I Sem- GR20 2021-22									
		OVANCED SOLID MECHANICS GR20D5002 (N	MID-II)						
S.No	Roll No	Name of Student	Maximum Marks (20 M)						
1	21241D2001	ATKAPURAM PRASHANTH	17						
2	21241D2002	BANDI SRI RAM GOPAL	18						
3	21241D2003	CHALLA MADHAVI	14						
4	21241D2004	PAMMI DIVYA	17						
5	21241D2005	DUMMA UMESH KUMAR	19						
6	21241D2006	K LATHASREE	19						
7	21241D2007	MARIYALA VAISHNAVI	19						
8	21241D2008	MAVOORI PRANAV	15						
9	21241D2009	MITTAPALLI NAGA ASHWINI	18						
10	21241D2010	RAVULA VENKATA SURAJ REDD	14						
11	21241D2011	REPATI MOHAN BABU	15						
12	21241D2012	ANDHYA CHERUKU	17						
13	21241D2013	SHAIK FEROZ	13						
14	21241D2014	K SAI CHANDRA	19						
15	21241D2015	THOTA HARSHAVARDHAN	14						
16	21241D2016	ARIKUPPALA LALITHA	17						
17	21241D2017	AMBA RAMA GNANENDRA SAI	15						
18	21241D2018	SAI YENUMALA DEVESH GOUD	15						
19	21241D2019	RASHANTH KUMAR	AB						
20	21241D2020	BAVANDLAPELLI THARUN TEJA	10						
21	21241D2021	GNITISH KUMAR	13						

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE COMPLETION STATUS

Academic Year : 2021-22

Semester

Name of the Program: M.Tech Structural Engineering Year: I See

: I

Course/Subject: Advanced Solid Mechanics

Section: A

Course Code: GR20D5002

Dept.: Civil Engineering

Name of the Faculty: Mr. K. Veera Babu

Designation: Assistant Professor

Actual Date of Completion & Remarks, if any

Units	Remarks	Objectives Achieved	Outcomes Achieved
Unit I	02-12-2021 Unit covered on time	1	1
Unit II	27-12-2021 Unit covered on time	2	2
Unit III	25-01-2022 Unit covered on time	3	3
Unit IV	17-02-2022 Unit covered on time	4	4
Unit V	10-03-2022 Unit covered on time	5	5

Signature of HOD

Signature of faculty

Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.

Ros Gokaraju Rangaraju Institute of Engineering & Technology (Autonomous College Affiliated to JNTUH) (12 Pages) Bachupally, Kukatpally, Hyderabad - 500090 MID TERM EXAMINATION П 419990 No. H.T. No. 21241D2002 Name of the Examination Barnot for M. Tech I Year I sem MidI Fram Course M. Tech STE CiVI Date 14-03-2022 Branch Signature of the Invitation 1 2 3 Q.NO. 5 6 TOTAL а b а b a b b b а b а а MARKS 14 5 1) START WRITING FROM HERE Saint venants solution to the problem of Torsion in straight 4. bars with Circular cross section: The Boundary of the circular (rosssection is x2+y2=x2 The poisson's vatto and boundary condition are to be Satisfied by taking the stress function in the form $\mathcal{D} = \mathcal{C}(x^2 + y^2 + y^2)$ We know that from TPB=-260 where 70 = 20 + 10 $= \int_{\chi_{2}^{2}}^{2} (e(\chi^{2}+\chi^{2}+\chi^{2})) + \int_{\chi_{2}^{2}}^{2} (e(\chi^{2}+\chi^{2}+\chi^{2}))$ (e(2)) + (e(2)) $\frac{1}{2} \frac{4}{2} = -260$

e= -60 : Ø= e(x24y=x4 = - 60 (x2+y2-x2) - () Apply Torque T= 2 / Ødrdy $= 2 \int \int -\frac{60}{2} (\chi^2 + \chi^2 - \chi^2) d\chi dy$ = -60[] X2dA +]]ydA -][x2dA] (: dxdy=d4) Here f(xt dA = Tyy = Tyy) $\iint y^2 dA = I_{XX} = \frac{\pi y^9}{4}$ $\int |y^2 dA = y^2 \int |dA = y^2 A = y^2 (\pi y^2) = \pi y^4$ on substituting T = - GO [TY' + TY' TY'] = -60 [IY7] = 60 1114 We know that J = Try(Polarmoment) 2 (Polarmoment) of Inextla) T = GOT[T=6J0/-2

Shear stress

$$T_{ZX} = \frac{10}{19} = \frac{1}{19} \left(\frac{60}{2} \left(x^{4}y^{2}, y^{4} \right) - 6.0y \right)$$

$$T_{ZY} = -\frac{10}{19} = \frac{1}{19} \left(-\frac{60}{2} \left(x^{4}y^{2}, y^{4} \right) \right) = +60x$$
we know $T = \sqrt{2x^{2} + T_{ZY}^{2}}$

$$= \sqrt{(+60y)^{2} + (60x)^{2}}$$

$$= (-6x)\sqrt{y^{2} + x^{2}} = -6x)$$

$$= (-6x)\sqrt{y^{2} + x^{2}} = -6x)$$

$$T_{ZX} = -\frac{6}{10} = -3$$

Pure Bending of Beam: Consider a vectangular beam of length 'L' willing and of height (2h) The polynomial of second degree quation of stress function : given by $\mathcal{B} = \frac{a_2 \chi^2}{2} + b_2 \chi y + \frac{c_2 y^2}{2}$ Stresses are given by $\Im = \frac{370}{29^2} = \frac{3}{79^2} \left(\frac{9 \times 2}{2} + \frac{1}{2} \times 1 + \frac{1}{2}\right)$ = (0 + 0 + 2 + 5) = 5 $G_{y} = \frac{\partial^{2} \sigma}{\partial y^{2}} = \frac{\partial}{\partial x^{2}} \left(\frac{q_{y} x^{2}}{2} + \frac{\partial}{\partial x^{y}} + \frac{g_{y} y^{2}}{2} \right)$ $\overline{\lambda}_{y} = -\frac{\partial \emptyset}{\partial x \partial y} = -b_2$ Asume All Constant will be Zevo except 5 Q=S_1 Gy=0, Tay=0 In this it gives a uptorm stors function (field) Moment = 0) The polynomial of third deve of stress function is greated $\mathcal{L} = \underbrace{C_3 x^3}_{3} + \underbrace{C_3 x^2}_{3} + \underbrace{C_3 x^2}_{2} + \underbrace{C_3 x^2}_{2}$

$$G_{z} = \frac{\partial^{2} B}{\partial y^{2}} = G_{z} + d_{z} y$$

$$G_{z} = \frac{\partial^{2} B}{\partial x^{2}} = a_{z} x + b_{z} y$$

$$T_{z} = -\frac{i}{2} B = -b_{z} + G_{z} y$$
Assume all (onstant be zero except ds

$$G_{z} = d_{z} y = \sum pore body y f (br beam)$$

$$G_{z} = 0$$

$$T_{z} = 0$$

$$G_{z} = 0$$

6. Factor of safety: a) - The factor that to be taken for the consideration of sofety of the material under Ultimate load rather than considering and designing only for the see design load (given load) The material should be designed for the mode of Collapse them the mode of failure (Servi Cability) - For concrete = 3 and steel = 1-2 (-1.1) F.O.S = Ultimate stress Corresponding stress b) yie king Criteria: The criterion for the material for the yielding the utimate load acting on it is called yielding criteria. - The zone in this Witerla is Called yielding zone () Strain hardening: The phase / zone in which the strain will be reaching the higher values like 0.002 in steel is called strain hardening zone. ET Litter zone Zone. d) Nominal and True stress and strain. Nominal stress (onominal) = Force Applied Area acting True stress (Exue) = Resisting for le Area atthg Nominal strain (Enominal) = SR =: Load implied Change in length due to

True straim (Eme) = SI = Orginal desermation of ky Original kryth taken Resilience and Toughness: (Response energy) Resilience is the energy stored under the action of Toughness is the material property to resist the load load on the body. - If the material is said to be tough, the material law with stand the higher loads and can compensate the higher resistance against rupture. W app

Tom

_{GOKARAJ}U RANGARAJU

INSTITUTE OF ENGINEERING AND TECHNOLOGY

Department of Civil Engineering

I.M.Tech. I Semester MID II EXAMINATION March 2022

ADVANCED SOLID MECHANICS (GR20D5002)

Time: 15 Minutes Date of Examination: 14-03-2022 (AN)

Max. Marks : 5 Marks

Answer all questions

 $10 \ge 1/2 = 5$ Marks Bandi SVi Rambopal Roll No. Name: Factor of safety is 1. Tensile stress / Permissible stress e) Compressive stress / Ultimate stress f) Ultimate stress / Permissible stress 2) Ultimate stress / Shear stress h) A brittle material has 2. c) No plastic zone No elastic zone S d) None of these Large plastic zone d) The materials which have the same elastic properties in all directions_ (a 3. d) Hard c) Homogenous b) Brittle a) Isotropic Torsional rigidity of a shaft is defined as 4. d) T/Jc) TJ b) GJ a) G/J When a shaft is subjected to a twisting moment, every cross-section of the shaft 5. will be under b) Compressive stress a) Tensile stress d) None of the above c) Shear stress The polar moment of inertia of a solid circular shaft of diameter (d) is (6. c) $\pi d^4 / 32$ d) $\pi d^4 / 64$ b) $\pi d^{3}/32$ a) $\pi d^2 / 16$ The relationship between the true strain and engineering strain is given as(7. c) $\epsilon = \ln(e+1)$ d) $\epsilon = \ln(1/(1+e))$ b) $\varepsilon = \ln(e)$ a) ε=e At the state of pure shear, normal stress value will d) None 8. b) equal to shear c) zero a) maximum Assumptions of Plastic theory 9. a) Material is isotropic b) There is no Bauschinger effect c) Material is incompressible in the plastic range 10. The relationship between Young's modulus (E), Bulk modulus (K) and Poisson's ratio (µ) is given by c) E=2K(1-2µ) d) $E = 2K(1-3\mu)$ b) Ε=3K(1-2μ) a) $E=2K(1-2\mu)$

*:::# 	9.	8	7.	6.	5	4	<u>.</u>		12	<u> </u>	Nam				
 c) The relation bety d) None of the mer The slope of the stu a) Elastic modulus 	a) maximumWhat is Hooke's laa) The relation bethb) The relation beth	a) Bernoulli's law At the state of pure	a) 0.01 The law which sta it is known as	applied to it? a) Elastic modulus Find the strain of a extension of rod is	a) Increases more c) Increases in pro What the number	As the elastic limi	The materials whi	a) $(0x/2) + (1/2)$ b) $(\sigma x/2) - (1/2)$ c) $(\sigma x/2) + (1/2)$ d) $(1/2) \times \sqrt{(\sigma x^2)^2}$	When a body is s stress (τxy), the n	 Young's modulus a) Volumetric si b) Lateral stress c) Longitudinal d) Shear stress tr 	e: M. Vaishna	Time: 15 Minutes Answer all questio		5	n
ween lateral strums nioned ress-strain curve in b) plastic modult	ween shear stress and ween shear stress	b) Hooke's law shear, normal stre b) equal to shea	b) 0.001 tes that within elast	b) Plastic moduli a brass rod of lengt equal to 0.1 mm?	rapidity portion to the stres that measures an o	t reaches, tensile st	ich have the same e Brittle c) Hon	$ \begin{array}{l} & \stackrel{\scriptstyle ()}{\scriptstyle \times} & \stackrel{\scriptstyle ()}{\scriptstyle (0X^2 + 4 \ \tau^2 Xy)} \\ & \times & \stackrel{\scriptstyle ()}{\scriptstyle (0X^2 + 4 \ \tau^2 Xy)} \\ & \stackrel{\scriptstyle ()}{\scriptstyle \times} & \stackrel{\scriptstyle ()}{\scriptstyle (0X^2 - 4 \ \tau^2 Xy)} \\ & \stackrel{\scriptstyle +}{\scriptstyle + 4 \ \tau^2 Xy)} \end{array} $	iubjected to a direct ninimum normal str	 is defined as the rist ress and volumetric and lateral strain stress and longitudi shear strain 		Date of exam	ADVANCED S	GO INSTITUTE OF E I M.Tech. I Semeste	
the elastic deforma (c) Poisson's ra	em? and the correspond nd the correspondir	ss value will r c) zero	c) 0.05 tic limits strain prov	us c) Poisson's rati h 100mm which is	s d) Decrease sbject's resistance t	rain	lastic properties in a nogenous d) F		t tensile stress (σx) ess is	atio of 2 strain inal strain	Roll No.	ination: 07-022(OLIN MECHANI	**************************************	
ng sucss tion region is tio None of th	ing strain ig strain	d) Poiss d) None	d) 0.005 luced is proportior	o d) Stress modul subjected to a tensi	o being deformed	e more renidly	all directions are ca lard		in one plane accor		1 2 4 1	122 (AN)	CS (GR20D5002)	RAJU ND TECHNOLOG Engineering TION February 20	
ne mentioned		ion s iaw (C	nal to the stress pro	us ile load of 50kN w	the stress elastically when s	(alled (o		npanied by a simp (Õ	D 2 0	Max. Marks : 5N 10x1/2=15Marl		3Y 22	raid
2)))			oducing	hen the	stress is	r V	<		le shear b)	Š	T 0	larks cs			

and the set

Divertion in sine of epition of

I. - 1.0 376 - 1. 576 - 160.376

421128

Ц 160 37C +

12517-941 + 15/05-4-21 + 14397 9C

- 42616

$T_{3} = \frac{-10037\cdot118}{45\cdot101} = 3662.978 + 1101.7$ $T_{3} = \frac{45\cdot101}{50} = \frac{50}{25\cdot101} = \frac{60}{100} = \frac{10009\cdot38}{10009\cdot38}$	$T_{1} = 4\% \ 707 + 2\% \ 707 - 1.293$ $T_{2} = 4\% \ 707 + 2\% \ 707 - 1.293$ $T_{3} = \left 2\% \ 707 \ 100 - 1.293 \right + \left 4\% \ 707 \ 60 - 1.293 \right + \left 60 - 1.293 \right + \left 4\% \ 707 \ 1.293 \right + \left 60 - 1.293 \right + \left 75 - 1.29$	- 48.707 50 60 50-S1.293	$\begin{bmatrix} - 169.07. & 109.07. & 109.07. \\ \hline \\ $	$= 35.76.$ $= 7^{2} + 121.128 = p^{2} + 126169p = 35.76 = 0.$ $= 8.39 \times 10^{4}$ $= 1.191$ $= 1.191$	1971 : -120.376 50 60 50 - 140.376 100
	48.107 50 50 28.107			1×10 15	

Q .. Z W \cap J Direction H H J Ð 2-0161.91- Ed.A Sb: 88 - 2 3 52.95 252.05 4.366 ×104 \$1,335.010p2 1 165.797 -0.746 19-16 + 19-111 + 7 9-181 13-67 60 111.67 S 100 20909.967. - 9.005. 236.789 + 335.0 13184001 50 60 cosine 100 91.67 111.67 100 50 - 14601 864 TP - 11009. 386 -0 8470.189× 12203.589 + 20909.9675p + 9.005 80 13167 d Pa + 100 91.62 60 00 50 131.67 60 Or Ja2+6+62 g T 60+31.67 Đ. 60 100 ý 91.61 Ja2+62+C2 60 3 768× 103 +р () 6.04 × 10-3 13.67 131.67 SO ٦ 0 60 111-67 111-67 100 3 00 91.67 100 60

2. Differential equations - 2x (dyxdz) dy + (2x + 2) dy + dy + 2 x dy + 2 x dy + 2 x dy 5 9 clock wise -vel) Taking moments g Pry Sphorp L, 20. 0 - (Try + 2 Try dy)(4++dz) + Exx Ky 14.995 PZ P values ier egual 3.535 0 consider a 5 + 204 dy hp. cp W 00 RPXHJ O LANGY 4.998 horad + July 24.745 20 20 + 20 + 20 4 0 a proa bout o' Coloctionise + ve', counter plane 3.535 for 24.745 S ž 010 to Pr hr 5 MPa(cr) KN/m2 Scre peglected 0 = C m з С thry 21.15

DABC Similarly Consider 30. DEFG ABEE MC BCDE 52 N Spephperly Consider Y Tyndyda - Try dady : c 2 KL U 24S Txy get b 11 D NOE 282 ryal plane ī 2 K 0 -I hp res + hey ! 2p re + KD ý. ST N CN C hp he + + 273 25 SK a cts + 29 ds Iny dry dy de - O cube and yo plane - Aly W rsfl, by cyby ' t Shi he he the 20 242 02 22 + 2310 + x21 SVE 1 S P 5/15 + e fry d ~) 23 DCDG get -> J. 1 Tys .

Hatting memorals about a
- org x dayly
$$f_{1}$$
 (1y1 234,14) da dada
- org x dayly f_{1} (1y1 234,14) da dada
- org x dayly f_{2} (1y1 15 + daylads)
- (1x + dag ds) daylads (1 + 75 + daylads) x
+ or dadys - (1a + dag da) + 15 + daylads) x
He trow that by 2D equation
To be in equilibrium, we have two contring
2 fa = 0 - 1
- (1x + daylog f + Ba dadys 0
- (1x + dady + day - (1x)) d8 dy + (1x + daylads) x
- (1x + dady + day - (1x)) d8 dy + (1x + daylads) x
- (1x + dady + daylog f + Ba dadys 0
- (1x + dady + day + Ba + daylog - (1x + dady + day + b) - (1x + dady + daylog f + b) - (1x + dady + daylog f + b) - (1x + dady + daylog f + b) - (1x + dady + daylog f + b) - (1x + dady + day + b) - (1x + dady + daylog f + b) - (1x + dady + b) - (1x + dadylog f + dadylog f + b) - (1x + dadylog f + dadylog f + b) - (1x + dadylog f + dadylog f + b) - (1x + dadylog f + dadylog f + dadylog f + b) - (1x + dadylog f + dadylog f + b) - (1x + dadylog f + b)

t to 5 29 2 spup (here the that) + uphpup (ust) -27 NG NG Kel Ke R 3 physes 2 phy he he to have to the t 11 $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$ 2+ 2phperer Sphp(kp 20+ 0 SD + + + 2250 Sphpup e contra la cont arey Kare ac ndition + 2743 +By = 0 alize + Bx + **≠**0) 5 CC + 38 -0 V 0 + Br drudyd & -2. Sphere all -+ B, dxdyda 4 973 (Rh 873 C 0

$$\frac{(\operatorname{Advanced -Solid Mechanics}_{23 \text{ Stymment -1}} \xrightarrow{BSS Ram food}_{21 \text{ Millows}}}{(Millow)}$$
1 Develop the differential equations of equilibrium for 2D and 3D as problems in clasticity using Cartesian Goodnack system with chailed illustrations.
2 - Dimensional (2D) Differential Equation:
- If the bady is in equilibrium then a small representative part isalo as an equilibrium - Then a small representative part isalo as the stresses acting are \mathfrak{C}_{2} \mathfrak{S}_{2} T_{23} to \mathfrak{T}_{23} to \mathfrak{T}_{23} \mathfrak{C}_{23} \mathfrak{C}_{2

Similarly Tyz = Tzy Tex = Trz For this element in equilibrium has to satisfy the two conditions i) Sum of forces in each direction must be 'o'. ii) sum of Moments of force about the reference axis should be b' For quilibrium of forces we can write SFX=0 $(\varepsilon_{\chi} + \frac{1}{2}\varepsilon_{\chi} dx) (dy x l) - (\varepsilon_{\chi}) (dy x l) + (Ty x + \frac{1}{2}v_{\chi} dy) (dx x l)$ $- T_{yx}(dxx1) + B_x(dxdy) = 0$ Der dray + Myx dray + Bx dray =0 $\frac{\partial G_{\chi}}{\partial \chi} + \frac{\partial T_{\chi\chi}}{\partial \chi} + B_{\chi} = 0$ Similarly EFy=0 => dey + Dray + By=0 Differential Equations for 3 Dimensional Gse: In 3-D case Differential Guations S. S. S. Thy, Tyz, Tzx are the stress acting on the body. - The components of body forces are Br, By & Bz per unit volume in xy & z direction. stress acting plane 6x DABC 64 CD60 OAGF 62 DEFG of the dr Tyztoryz dy ABEF 6y + Day dy CDEB 62+252 dz DEFG Try + Try dx Tay OABC Tyz + Myx dy ABEF Tyz CDGO Text DEx dz CDEB DAGE Tex

The

31

in

-7450-7X1 2,21 AXIS XYZ 45° 45° 90 X 135° 45° 90 41 21 90 90 8 The transformation matrix Q is given by $Q = \begin{bmatrix} (o_{S}(x',x') & (o_{S}(x',y)) & (o_{S}(x',z)) \\ (o_{S}(x',y)) & (o_{S}(y',y)) & (o_{S}(y',z)) \\ (o_{S}(x',y)) & (o_{S}(x',y)) & (o_{S}(x',z)) \end{bmatrix}$ $= \begin{bmatrix} c_{05} 45^{\circ} & c_{05} 45^{\circ} & c_{05} 90^{\circ} \\ c_{05} 135^{\circ} & c_{05} 45^{\circ} & c_{05} 90^{\circ} \\ c_{05} 90^{\circ} & c_{05} 90^{\circ} & c_{05} 90^{\circ} \end{bmatrix}$ $= \begin{bmatrix} 0.707 & 0.707 & 0\\ -0.707 & 0.707 & 0\\ 0 & 0 & 1 \end{bmatrix}$ [6]]= [9] [5] [9] $= \begin{bmatrix} 0.707 & 0.707 & 0 \\ -0.707 & 0.707 & 0 \end{bmatrix} \begin{bmatrix} 10 & 15 & -15 \\ 5 & 10 & 20 \\ -5 & 20 & 25 \end{bmatrix} \begin{bmatrix} 0.707 & -0.707 & 0 \\ 0.707 & 0.707 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 14.995 & 0 & 3.535 \\ 0 & 4.9984 & 24.745 \\ 3.535 & 24.745 & 25 \end{bmatrix}$ 3) The Three stress components at a point are given by [100 50 60] 50 80 100] Kpa. Calculate the principal stresses and their direct and maximum shear stress? $\begin{bmatrix} 6 \end{bmatrix} = \begin{bmatrix} 100 & 50 & 60 \\ 50 & 80 & 100 \end{bmatrix} K pa \\ \hline 60 & 100 & 60 \end{bmatrix} K pa$ €p3-I, p2+I2p -I3=0 -> Cubic quator II = Exterts (Trace of Matrix) = 100+80+60 = 240 Kpa Scanned with CamScanner

$$\begin{aligned} I_{2} &= (dathered + Q + (d(G) + d(G)) \\ &= \left| \begin{bmatrix} x_{0} & b_{0} \\ b_{0} & 6_{0} \end{bmatrix} + \left| \begin{bmatrix} x_{0} & 5_{0} \\ b_{0} & 6_{0} \end{bmatrix} + \left| \begin{bmatrix} x_{0} & 5_{0} \\ s_{0} & s_{0} \end{bmatrix} \right| \\ &= -5200 + 2400 + 5500 \\ &= 2100 \\ \\ I_{3} &= 1 & cl = 1 & 00(-5200) - 50(-3000) + 60(200) \\ &= -5723,000 \\ \vdots & cp^{3} - 240 & cp^{2} + 2700 & cp + 5,23,000 = 0 \\ &= -25,23,000 \\ \vdots & cp^{3} - 240 & cp^{2} + 2700 & cp + 5,23,000 = 0 \\ &= -21635 & Kpa \\ &= -33.74 & Kpa \\ \\ S_{3} &= -33.74 & Kpa \\ \\ S_{4} & (G-7) & T_{4}, & T_{4} \\ \\ T_{2} & T_{4}, & (G-7) & T_{4}, & T_{4} \\ \\ T_{2} & T_{4}, & (G-7) & T_{4}, & T_{4} \\ \\ T_{2} & T_{4}, & (G-7) & T_{4}, & T_{4} \\ \\ T_{2} & T_{4}, & (G-7) & T_{4}, & T_{4} \\ \\ \end{bmatrix} \begin{bmatrix} k_{1} \\ m_{1} \\ m_{1}$$

b

-

The Direction cosines of principal stress of are

$$A = ak = 11,3832 + xy sos x10^{-5} = 0.622$$

$$n_{1} = bk = -13,8175 + xy sos x10^{-5} = 0.622$$

$$n_{1} = ck = 13,181 + xs so x10^{-5} = 0.593$$
Direction cosines of 52:

$$\begin{bmatrix} x - 5 & xy & 7x \\ Txz & Ty & 5 - 5 \\ Tzz & Ty & 5 - 5 \\ Tzz & Tzy & 5 - 5 \\ to & (so - (so + 5239)) \begin{bmatrix} h_{2} \\ h_{2} \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ to \end{pmatrix}$$

$$= \begin{bmatrix} (1604 100 \\ 100 \\ 60 \\ 100 \\ -2396 \end{bmatrix} = -6,19.8$$

$$C = \begin{bmatrix} 50 & 17604 \\ 100 \\ 60 \\ -2396 \end{bmatrix} = -6,19.8$$

$$C = \begin{bmatrix} 50 & 17604 \\ 60 \\ 100 \\ -2396 \end{bmatrix} = -6,19.8$$

$$C = \begin{bmatrix} 50 & 17604 \\ 60 \\ 100 \\ -2396 \end{bmatrix} = -6,19.8$$

$$C = \begin{bmatrix} 50 & 17604 \\ 60 \\ 100 \\ -2396 \end{bmatrix} = -6,19.8$$

$$C = \begin{bmatrix} 50 & 17604 \\ 100 \\ -2396 \\ -2396 \\ -2396 \end{bmatrix} = -6,19.8$$

$$C = \begin{bmatrix} 50 & 17604 \\ -3 \\ -2396 \\ -$$

$$\begin{aligned} C = \begin{vmatrix} so & 11874 \\ 60 & 100 \end{vmatrix} = -21244 \\ k = \bot \\ 4s = ak = 0.588 \\ M_3 = bk = -0.362 \\ M_3 = Ck = -0.724 \end{aligned}$$
Maximum shear shress

$$T_{max} = \underline{G} - \underline{G} = 216.35 - (-38.74) \\ = 127.54 \ kpa_{1/2} \end{aligned}$$
9) Derive the Compatibility equations for a 3-0 Systems
Differential of G_2 with $y 4z \Rightarrow \frac{3}{2}G_3 = \frac{3}{2}\left(\frac{3}{2}C(\frac{59}{2})\right) \\ \frac{1}{192}C(-\frac{5}{2}) + \frac{5}{12}(\frac{3}{2}C(\frac{59}{2})) \\ \frac{1}{12}C(-\frac{5}{2}) + \frac{5}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) \\ \frac{1}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) \\ \frac{1}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) \\ \frac{1}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) \\ \frac{1}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) \\ \frac{1}{12}(\frac{1}{2}) + \frac{5}{12}(\frac{1}{2}) \\ \frac{1}{12}(\frac{1}{2}) \\ \frac{1}{12}(\frac{1}{12}) \\ \frac{1}{12}(\frac{1}{12}) \\ \frac{1}{12}(\frac{1}{12}) \\ \frac{1}{12}(\frac{1}{12}) \\ \frac{1}{1$

Similarly in y-direction

$$\frac{2 \partial^2 \mathcal{E}_{y}}{\partial x \partial z} = \frac{1}{\partial y} \left(\frac{\partial V_{xy}}{\partial z} - \frac{\partial V_{5(z)}}{\partial y} + \frac{\partial V_{yz}}{\partial x} \right)$$

Simlary in z-direction

$$2\frac{\partial \mathcal{E}_2}{\partial x^{\rm by}} = \frac{1}{\partial z} \left(-\frac{\partial \mathcal{X}_{\rm by}}{\partial z} + \frac{\partial \mathcal{X}_{\rm bz}}{\partial x} + \frac{\partial \mathcal{X}_{\rm bz}}{\partial y} \right)$$

These are the 3D Compatibility equations of strain rolet The above equations are called " saint-venant's Guations of Compatibility of Components of strain".

Assignment - I. M. Vaishnavi I- Mitch Advance Solid Mechanics (ASM). 2124102007. for 2D and 3D 1. Differential equations of equilibrium problem. Two Dimensional (20) differential equations. If the body is in equilibrium, then the small respresibilities parts are also in equilibrium. je, 21 - xb - je je part of part of dz. In a stressed body, stress components vary from point to point . In 2D, the stresses acting are or, oy, oz, Txy, Tyz and Txz These stresses does not vary from point to point through the thickness, because they are independent of z-axis. Let us consider an x-y plane. Bx and By are the components of body forces per unit volume in y + ary dy a and y axis. (Bj=0,2D). ~ Tyn + a Tyn dy Take moments, about point o' $\begin{array}{c} T_{2y} + \frac{\partial T_{2y}}{\partial x} dx \\ T_{a} + \frac{\partial \sigma_{x}}{\partial x} dx \\ \hline \sigma_{x} + \frac{\partial \sigma_{x}}{\partial x}$ - $\left[\frac{dy}{dx} + \frac{\partial y}{\partial y} \left(\frac{dy}{dy} \right) + \left[\frac{dy}{dy} + \frac{dy}{dy} \right] \frac{dy}{dy} \right]$ + [Tyy + a Tyy (dx) x dy x dx) - [Tyz + aTyz dy dx.dy) (- dadybridyda almost equal - Ba dad gdy + By dady da = 0 to sero) By neglecting triple product in (da, dy, da, on dy) we get Tay dyda - Tyx dady = 0 => Tay = Tyx

11¹⁹, Type Try, Txp Try, Txp Try,
For this element in equilibrium, It bas to continue
conditions.
1. Sum of forces in each direction must be gene.
1. Sum of forces in each direction must be gene.
1. Sum of the moments of the force about the relevance
axis should be gene.

$$z_{fa:} \circ \rightarrow for equilibrium of forces.$$

 $(T_{f} + \frac{2s_{a}}{2x} dx) dy_{1} - \frac{q}{2} dy_{2} + (T_{f} + \frac{2T_{q}}{2y} dy) dx - (T_{f} x) dx_{1}$
 $+ Bx dx dy = 0$ (dx dy to)
 $\frac{2T_{a}}{2x} dxd + \frac{2T_{q}}{2y} + Bx = 0$
11¹⁹, $s f_{q} = 0$
Differential equation for 3D.
In 3D, eq. equations are $6 \cdot (T_{a}, F_{q}, \sigma_{s}, T_{a}, T_{q}, T_{q}s, T_{s})$.
Bedy force components ove $Bx_{1}By_{1}B_{3}$ by per unit.
Nolume in $x_{1}y_{1}y_{2} - direction.$
 $\int \frac{\sqrt{2}}{2} \frac{T_{q}^{2} + \frac{2T_{q}}{2}}{T_{q}^{2}} \frac{dy}{dy}$ $\int -T_{q}s + \frac{2T_{q}}{2s} ds$
 $OCD6 \rightarrow T_{q}$
 $ABEF \rightarrow T_{q} + \frac{2m_{q}}{2} dy$ $OABE \rightarrow T_{q}$
 $OABF \rightarrow T_{s}$
 $BCDE \rightarrow T_{s} + \frac{2T_{s}}{2s} ds$.

DEFG -> Tay + aray da ABEF -> Tys + arysdy. BCDE $\rightarrow 7_{5x} + \frac{\partial 7_{5x}}{\partial x} d_5$. By taking moment of force about point 0, we get Try = Tyr Tyz = Tzy TXJ = TJX For this cube element in equilibrium, it has to satisfy two I Sum of forces in each direction must be zero. 2. Sum of moment of force about reference axis must be zero. equilibrium eq. Efx = 0. - of dyds + (fa + arada) dyds - Yza dady + (7/8a + a78a d 3) dady + Bx (dadyds) + (Tyn + arya dy) dadz - Tyndadz= 0. $= \left(\frac{2r_{x}}{2x} + \frac{2r_{y}}{2y} + \frac{2r_{y}}{2y} + Bx\right) dx dy dz = 0$: dadyds to. and + also + alia + by + ba = 0

11'Y

$$2f_{ij} = 0$$

$$\frac{3f_{j}}{3y} + \frac{3f_{j}}{3s} + \frac{3f_{i}}{3s} + B_{j} = 0$$

$$2f_{j} = 0$$

$$\frac{3r_{j}}{3s} + \frac{3f_{j}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3f_{i}}{3y} + B_{j} = 0$$

$$\frac{3r_{j}}{2s} + \frac{3f_{i}}{3s} + \frac{3$$

3.
$$\mathbf{r} = \begin{bmatrix} 100 & 50 & 60 \\ 50 & 90 & 100 \\ 60 & 100 & 60 \end{bmatrix}$$
 their directions, Max. Shear stress.

$$\mathbf{r} = \begin{bmatrix} 100 & 50 & 60 \\ 50 & 80 & 100 \\ 60 & 100 & 60 \end{bmatrix}$$

$$\mathbf{r} = \begin{bmatrix} 100 & 50 & 60 \\ 50 & 80 & 100 \\ 60 & 100 & 60 \end{bmatrix}$$

$$\mathbf{r} = \mathbf{r} = \mathbf{r} + \mathbf{r} = \mathbf{r} =$$

principle cosines of
$$\mathbf{r}$$
:

$$\begin{pmatrix}
\left(a_{n}^{0}-c_{1}^{-}\right), \left(a_{n}^{0}a_{1}^{-}b_{n}^{-}\right), \left(a_{n}^{0}a_{1}^{-}b_{n}^{-}a_{n}^{-}a_{n}^{-}b_{n}^{-}a_{n}^{-}a_{n}^{-}b_{n}^{-}a_{n}^{-}b_{n}^{-}a_{n}^{-}b_{n}^{-}a_{n}^{-}b_{n}^{-}a_{n}^{-}b_{n}^{-}a_{n}^{$$

Direction cosine of
$$\sigma_{2}$$
.

$$\begin{vmatrix} \sigma_{1} - \sigma_{2} & \gamma_{4y} & \gamma_{5} \\ \gamma_{4}a & \sigma_{4} - \sigma_{2} & \gamma_{4z} \\ \gamma_{5}a & \gamma_{5}a & \sigma_{5} - \sigma_{5}a \end{vmatrix} \begin{pmatrix} J_{2} \\ m_{2} \\ m_{2} \end{pmatrix} + \begin{pmatrix} 0 \\ -0 \\ 0 \\ -0 \end{pmatrix},$$

$$\begin{vmatrix} 100 - 51 \cdot 30 & 60 & 60 \\ -50 & 80 - 51 \cdot 30 \\ 60 & 100 & (60 - 51 \cdot 30) \end{vmatrix} \begin{pmatrix} J_{2} \\ m_{2} \\ m_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -0 \\ 0 \end{pmatrix},$$

$$\begin{vmatrix} 45 \cdot \gamma & 50 & 60 \\ 50 & 28 \cdot 7 & 100 \\ 60 & 100 & 8 \cdot 7 \end{vmatrix}$$

$$a = \begin{vmatrix} 28 \cdot 7 & 100 \\ 100 - 81 \cdot 7 \end{vmatrix} = \begin{vmatrix} 50 & 100 \\ 60 & 100 & 81 \cdot 7 \end{vmatrix}$$

$$a = \begin{vmatrix} 28 \cdot 7 & 100 \\ 100 - 81 \cdot 7 \end{vmatrix} = \begin{vmatrix} 50 & 100 \\ 60 & 81 \cdot 7 \end{vmatrix} = \begin{vmatrix} 50 & 100 \\ 60 & 81 \cdot 7 \end{vmatrix} = \begin{vmatrix} 50 & 2.6 \cdot 7 \\ 60 & 100 \\ a = -0.150 \cdot 31 = -5565 = -5278 \cdot 10^{-5}$$

$$k = \frac{1}{\sqrt{a^{2}+b^{2}+c^{2}}} = 8 \cdot 55 \times 10^{-5}$$

$$J_{3} = a K = -0.933$$

$$m_{3} - b K = -0.4715$$

$$n_{3} = c K = 0.230$$
Direction cosines of r_{5}

$$\begin{bmatrix} (100 + 31 \cdot 67) & 60 \\ 60 & 100 & (60 + 81 \cdot 67) \\ n_{3} \end{pmatrix} = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{vmatrix} 13 \cdot 67 & 50 & 60 \\ 50 & 111 \cdot 67 & 100 \\ 60 & 100 & 91 \cdot 67 \end{vmatrix}$$

$$\begin{bmatrix} 1^{11} 67 & 100 \\ 100 & 1167 \\ 100 & 106$$

γS C

,f

By solvinger b + d - c, we get

$$\frac{\partial \nabla_{xy}}{\partial g} + \frac{\partial \nabla_{xz}}{\partial y} - \frac{\partial \partial y_z}{\partial x} = \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial y^2}$$
From eq-a, we get

$$\frac{\partial^2 e_x}{\partial y^2 g} = \frac{\partial}{\partial x} \left[2 \cdot \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} \right] = \frac{\partial}{\partial x} \left[2 \cdot \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} \right] = \frac{\partial}{\partial x} \left[2 \cdot \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} \right] = \frac{\partial}{\partial x} \left[2 \cdot \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} \right] = \frac{\partial}{\partial x} \left[2 \cdot \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} \right] = \frac{\partial}{\partial y} \left[2 \cdot \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} \right] = \frac{\partial}{\partial y} \left[2 \cdot \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} \right]$$

$$\frac{2325}{3x3y} = \frac{3}{35} \left[\frac{33x5}{3y} + \frac{33y5}{3x} - \frac{33xy}{35} \right] \longrightarrow 3$$

The above three equations are the 30 compatability equations. and are also called "Saint - Venant's" eq. of compatability.

C. Madhavi ASSIGNMENT-11 MTerb 1 yer 2124102003 ADVANCED SOLLD MECHANICS Develop the differencial Equations of equilibrilium for the case of 2-D problem in elasticity using poler coordinate system A: _ The polar coordinates of a point describes its position interms of distance from er fixed porntlæigies) of an angle measured from a fixed direction which is normally the porigontal axis. - Many Engineeting components have a degree of areal symptony that is they are Etthen rotationally symptric about a central axis as in a Case of Arulan MEny (or) contain circular tholes (a) made up of parits of hallow elisco (B) fike a Curved bar.

The + drug >00 + 300.90 Restri Cride de M on+ Reso Jon. dh FO Equilibrium Tho + 27 hody Equations in polar coor dénote Normal offices びれ Non B W Component THO, In Hadial 96 derection 10 $\rightarrow \sigma_r$ 7 Normal otters components in circumperenceal direction -> 50. Shearing Strees Components ~ MAD * to account of variation of stress The Natures of at the siles are not some > In poler wordinate system (H, 0) it He cartession system (4,9) are Holated by the following $\chi = \pi \cos \varphi$, $\chi^2 = \chi^2 + \gamma^2$ $y = x \sin \phi$; $\phi = \tan^{-1}(\psi_x)$ r= Jx7+42

Fronsider the state of stress on Element abod of which theolenous described by the polar coordinates 08 blown in frgwie. Fright Fo are the body forces on "Xç'o' démections Maspectèvely. -> Resolving forces in J-directeon For Equilibrium = FM=0. = (5 + 2 5 4 dr) (1+ dr) d0 - 5, - 7 d0 $-(\sigma_0 + \partial \sigma_0 + \partial \phi) dr sind 0 - \sigma_0 dr sind 0$ + (7, +) 10. 10) dh cos do - 7, dh cos do + Eldargo =0 Since do is very small sindo = do $| \cos do = |$ Neglecting hegher order terms A Stroplefying, we get

 $= -\overline{\sigma_{h}} \cdot \sqrt{d\theta} + \overline{\sigma_{h}} \cdot \sqrt{d\theta} + \overline{\sigma_{h}} \cdot \sqrt{d\theta} + \frac{1}{2} \cdot \sqrt{d\theta} + \frac{1$ $-\frac{\partial \sigma_{0}}{\partial \phi} \cdot d\phi \cdot d\gamma - \gamma d\gamma + \frac{\partial \gamma}{\partial \phi} + \frac{\partial \sigma}{\partial \gamma} + \frac{\partial \sigma}{\partial \phi} + \frac{\partial \gamma}{\partial \phi} + \frac{\partial \sigma}{\partial \phi} + \frac{\partial \sigma}$ - The dade + ondrade - odrade + Nho dage tEN & dodr = 0' devide there ho up by rood of $\frac{1}{2} \frac{1}{2} \frac{1}$ Il Hospiting all forces in 0-direction. In Equilibrium EFO =0. $(-\overline{\sigma}_{0} \ \underline{\omega}_{0} \ \underline{\delta}_{0} \ \underline{\delta}_{0$ $\frac{d\theta}{dt}\left(\frac{dx}{xt}\right) + \left(\frac{1}{t} + \frac{\theta}{\theta} + \frac{\theta}{\theta} + \frac{\theta}{\theta}\right) \cdot \left(\frac{dy}{t} + \frac{\theta}{\theta} + \frac{\theta}{\theta} + \frac{\theta}{\theta}\right) \cdot \left(\frac{dy}{t} + \frac{\theta}{\theta} + \frac{\theta}{\theta}$ + (Trot & Troja) (ddri) 3 10 do -Nor (1901) + (120 + 2120-12) (2 drdx) do + #0 (8 do 2) =0

By solving We got $\frac{1}{2} \cdot \frac{1}{20} + \frac{1}{270} + \frac{1}{270} + \frac{1}{270} + \frac{1}{20} = 0$ Jo abrance of boday forces, the Equitibus Eq ns $\left| \frac{\partial \sigma_{h}}{\partial n} + \frac{1}{n} \frac{\partial \gamma_{h} \sigma}{\partial \sigma} + \left(\frac{\sigma_{h} - \sigma_{\theta}}{\mu} \right) = 0 \right|$ -1 - 2 TO + 2740 - 2 THO =0 (520) d. Write short hote on strain rosalte straan guarge is a deverce le de To measure the strain on the force surface of a structure. - strain grapes are employed to maske the linear deformation over a strain guege longth to measure the change in Longoth Strice a single gaage can masure He stearn aboly a single direction. Strain Josettes consists of two of more (o-lecated strain gaages extended it -fixed angle wit gath ottor Resettenty proverly involve 2, 3, (9)14 & frain gaages relative orientation of 30°. 45 60(d)700;

types of Roseltes avec -- Used only when a 1. Tec roselte princeple strain (0,90) detractions are known is adverse h. Rectongular they are mostly 3 rosette guerge Jos ettes (0, 46, 10) per Afgeer 0 Sough genetry Delba reselte (0,00(26)) consider a strain resulte with - glaged Orlended at a , a+5, or+b+c with bolizonbul center strains. masure using the results Let the be Ea, Eb, Ec ET l's the major principle strain when is measured at of which ca ortentation f Ao Strains

ing transformation matrix we can write

$$G_{\alpha} = G_{\alpha}$$
 us a + G_{α} bin a + $Y_{\alpha \beta}$ generate
 $e_{\lambda} = e_{\lambda}$ (d' (a+b) + e_{β} bin (a+b) + $Y_{\alpha \beta}$ structur).
 $e_{\alpha} = e_{\lambda}$ (d' (a+b) + e_{β} bin (a+b) + $Y_{\alpha \beta}$'s tructur).
 $e_{\alpha} = e_{\lambda}$ (a+b+c) + e_{β} structur + $Y_{\alpha \beta}$'s tructur)
 $e_{\alpha} = e_{\lambda}$ (c + e_{β} d + e_{λ} ; $e_{\beta} \in Y_{\lambda \beta}$.
Solve
 $e_{\alpha} = C_{\lambda}$, c_{α} to $g \neq e_{\lambda}$; $e_{\beta} \notin Y_{\lambda \beta}$.
 p_{μ} for uple structur
 $e_{\gamma} = (e_{\lambda} + e_{\lambda}) + \sqrt{(e_{\lambda} - e_{\beta})^{2} + (Y_{\lambda} + Y_{\lambda})^{2}}$
 $e_{\lambda} = (e_{\lambda} + e_{\lambda}) - \sqrt{(e_{\lambda} - e_{\beta})^{2} + (Y_{\lambda} + Y_{\lambda})^{2}}$
 $e_{\lambda} = (e_{\lambda} + e_{\lambda}) - \sqrt{(e_{\lambda} - e_{\beta})^{2} + (Y_{\lambda} + Y_{\lambda})^{2}}$
 $e_{\lambda} = g^{\mu}$ by from $\lambda \neq \lambda = \frac{Y_{\mu}}{E_{\lambda}}$
 p_{λ} (which is the origin of the collumentation of g_{λ} benefiting moment for
 p_{μ} benefiting of k beam.
 f_{λ} prove bound by of a beam.

consider a rectangular been with length L weddheb, depeth 2h babjected to pure ! couple Morling its length of shows infig $M = \frac{1}{1}$ $M = \frac{1}{1}$ Consider a 2 nd order polynomial pet notices duct that "If any term gives only a constant state of Stress gloufore, $\beta = \alpha_2 \frac{\chi^2}{2} + \beta_2 \chi y + c_2 y^2$ by defenition $C_{\chi} = \frac{\partial^{2} \phi}{\partial q^{2}} = C_{3}$ $(onside a,=b, \ge 0.$ 6y= 220 = 92 Except cz Fry = - 2 + = - b2 7279 Apply bandary bonditions 「よう、リンエイ、「の」」 b) y=th; Yxy=0. of at x = any values. monut = torce v 1 distance. in destance. M = stress valea

$$M \equiv \int G_{xz} by dy = zb \int Sy dy z zb q x \begin{bmatrix} 2b^{2} \\ 2b^{2} \end{bmatrix}$$

$$= 2b Sx \begin{bmatrix} b^{2} \\ b^{2} \\ -b^{2} \end{bmatrix}$$

$$M \equiv 0$$

 $m = 2 b d_3 \frac{3}{h^3}$ (or) $d_3 = \frac{3}{3} m$ $d_3 = \underline{M}$, where $\underline{T} = \underline{\Psi} + \underline{J}^3$ · . Tx = d3 y Tx = m y ropure hendreg of hearn. Then the expression for pure handling of bearri 4. State and explain the cuscomptions of plateaty. A TO The Masponse la Endependent of rate Effects (2) The material is knompresable in the plastic dange. (3) There is no sauschinger affect. (u) Jhe yeeld ôtrers és independent of legarestatic presson (st) The matericalis écotropée. First two of these aromptions will usually be very good The other three may or nay not bo de penditug on the material and constates. S V c) REged linea REgEd-) Elas tra linear electic perfectly plastic fleordaning

Theories of failures Jho history bohind the various Jaileros theories to Alat whatever to Mespensible for gailere to the standard tensile test will also do Jesponsible for failure lunder all other Conditions of States loading Mar. prenueple stries - Theory - Rankine Max prencepte strain theiry - st. Vebants. Har Strain energy - Belcharm. Distortional Energy - Von MERCE. max shear stress the ory _ JHES ca octohedral shear stress theory Failure occus when matorial starts Exhibitry in élastre pelaviour. Brittle & Lactile materials are different modes of failures -> med. of failure - depends on loading Duchile maturale - exhibit yielding - plestic d-formation before faileur.» Britle materiel - poglelding - Sudden failure.

D. D. yield critencia plastic ysolding of the materical Babjaded. To any external forces to of considerable impositonce in the field of plasticity. - For predicting the onsof of glielding in Elastic material; there are at present too genrally acapted criterie a (1) Van mars ofdrøtortion - Energy autorion. (2) These of max show stress Chitereon. c) plasticity The ability of a solid material To lendelge permanent deformation. - A non- tleversable change of Shape in Jesponse to applied forces (d) Strain hardenike - Work hardonily also knoon as strain hordoning is the Strong-thening of a metal (3) poymer by platic deformation c) prominal and two stors & strain True strons is the ratio of force per actual (instantaneous) (2015 - Soctional area taking hateral Strain into Consideration

Nominal Strain 10 the rates of change is length per déginal length. Nominel stress is the matio of force per initial area of Chors-Section. True strair = change ie lungth actual length (Enclosed byth) J) Résilance analtoughneus The ability of a material to wEllstand Elestic déformation le Mout de formine plastically (8 called yesiliance Jhe ability of matarial to alkoub enougy and plastically deform without fracturing. a) Factor of safely It expresses how much stronger a system is then its needs to be for an intended load.