

Gokaraju Rangaraju Institute of Engineering and Technology

Department of Civil Engineering Structural Engineering

Analytical and Numerical Methods for Structural Engineering

(GR20D5006)

I M.Tech - I Semester

(2021-2022)

V Naresh Kumar Varma Assistant Professor

Design of Concrete Structures - I

Course File Check List

S.No	Name of the Format	Page No.
1	Syllabus	
2	Time Table	
3	Program Educational Objectives	
4	Program Objectives	
5	Course Objectives	
6	Course Outcomes	
7	Students Roll List	
8	Guide lines to study the course	
9	Course Schedule	
10	Course Plan	
11	Unit Plan	
12	Lesson Plan	
13	Tutorial Sheets	
14	Assignment Sheets	
15	Evaluation Strategy	
16	Assessment in relation to COb's and CO's	
17	Rubric for course	
18	Mappings of CO's and PO's	
19	Model question papers	
20	Mid-I and Mid-II question papers	
21	Mid-I marks	
22	Mid-II marks	
23	Sample answer scripts and Assignments	
24	Course materials like Notes, PPT's, Videos, etc,.	

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SYLLABUS

Academic Year : 2021-22

Name of the Prog	gram : M.Te	ech Year: I YearSemester: I			
Course/Subject	:ANMSE	Course Code	: GR20D2006		
Name of the Fac	ulty :	V Naresh Kumar	r Varma		

Dept.: Structural Engineering (Civil Engineering)

Unit-I

Fundamentals of Numerical Methods: Error Analysis, Floating-Point Approximation of a Number; Loss of Significance and Error Propagation; Stability in Numerical Computation. **Curve Fitting:** Linear Interpolation - Higher Order Interpolation - Lagrange Interpolation Interpolating polynomials using finites differences- Hermite Interpolation - piece-wise and spline Interpolation.

Unit-II

Elements of Matrix Algebra: Solution of Systems of Linear Equations-Direct method – Cramer's rule, Guass – Elimination Method-Gauss Jordan elimination – Triangulation (LU Decomposition) method – Iterative methods -Jacobi – Iteration method – Gauss – Siedel iteration, Eigen Value Problems- Jacobi method for symmetric matrices- Power method

Unit-III

Solution of Nonlinear Algebraic and Transcendental Equations

Bisection Method; Fixed-Point Iteration Method; Secant Method; Newton Method; Rate of Convergences; Solution of a System of Nonlinear Equations; Unconstrained Optimization.

Unit-IV

Numerical Differentiation & Integration: Solution of Ordinary and Partial Differential Equations - Numerical Integration – Double integration using Trapezoidal and Simpson's method. Euler's method – Backward Euler method – Midpoint method – single step method-Taylor's series method- R-K Methods.

Unit-V

Finite Difference scheme: Implicit & Explicit scheme

Computer Algorithms: Numerical Solutions for Different Structural Problems, Fuzzy Logic and Neural Network.

Text Books:

- 1. An Introduction to Numerical Analysis, Atkinson K.E., J. Wiley and Sons, 1989.
- 2. Theory and Problems of Numerical Analysis, Scheid F, McGraw Hill Book Company, (Shaum Series), 1988.

Reference Books:

- 1. Introductory Methods of Numerical Analysis, Sastry S. S, Prentice Hall of India, 1998.
- 2. Computer Based Numerical Analysis, Dr. M. Shanta Kumar, Khanna Book Publishers, New Delhi.
- 3. Numerical Methods for Scientific and Engineering Computations, M.K. Jain and S.R.K.Iyengar, New Age International Pvt. Ltd., 2005.

GokarajuRangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering

TIME TABLE

COURSE: Analytical and Numerical Methods in Structural Engineering

I YEAR I SEM

w.e.f: 15-11-2021

IM.TECH(GR20) – I SEMESTER

AY: 2021-22.

Day/Hou r	9.00 - 10.00	10.00 – 11.00	11.00 - 12.00	12.00-01.00	01.00 - 02.00	02.00 - 03.00	03.00 - 04.00
MON				LUNCH			
TUE		ANMSE					
WED	ANMSE						
THU				BREAK	ANMSE	ANMSE	
FRI							
SAT							

Signature of HOD

Signature of faculty

Date:

GokarajuRangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Programme Educational Objectives (PEO's)

- 1. Graduates of the program will equip with professional expertise on the theories, process, methods and techniques for building high- quality structures in a cost-effective manner.
- 2. Graduatesoftheprogramwillbeabletodesignstructuralcomponentsusingcontemporysoft waresandprofessionaltoolswithquality practices of internationalstandards.
- 3. Graduates of the program will be effective as both an individual contributor and a member of a development team with professional, ethical and social responsibilities.
- 4. Graduates of the program will grow professionally through continuing education, training, research, and adapting to the rapidly changing technological trends globally in structuralengineering.

Program Outcomes (PO's)

Graduates of the Civil Engineering programme will be able to

- a. An ability to independently carry out research /investigation and development work to solve practical problems.
- b. An ability to write and present a substantial technical report/document..
- c. Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
- d. Assess the impact of professional engineering solutions in an environmental context along with societal, health, safety, legal, ethical and cultural issues and the need for sustainable development.
- e. Possess critical thinking skills and solve core, complex and multidisciplinary structural engineering problems.
- f. Recognize the need for life-long learning to improve knowledge and competence.

Signature of HOD

Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE OBJECTIVES

Academic Year : 2021-22

Course/Subject :ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

On completion of this Subject/Course the student shall be able to:

S.No	Objectives
1	To analyse the performance of various interpolation technique and perform error analysis.
2	To develop the skill of solving linear algebraic systems by direct and iteration methods.
3	To compare various numerical differentiation and integration techniques.
4	To explain the various techniques to study Initial value problems in Ordinary Differential Equations.
5	To solve a range of problems on applicable software.

Signature of HOD

Signature of faculty

Date:

Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the objectives.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE OUTCOMES

Academic Year : 2021-22

Name of the Program : M.Tech	Year: I YearSemester: I
------------------------------	-------------------------

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

On completion of this Subject/Course the student shall be able to:

S.No	Outcomes
1	To analyse the performance of various interpolation technique and perform error analysis.
2	Solve linear algebraic system by direct and iteration methods and apply the knowledge of Eigen values and Eigen vectors to some contents in engineering.
3	Apply the knowledge of interpolation and extrapolation of uniform and non-uniform data to certain contents of Civil Engineering.
4	Apply the knowledge of numerical differentiation and integration to some contents of Civil Engineering
5	Solve ordinary and partial differential equations in structural mechanics using numerical methods.

Signature of HOD

Signature of faculty

Date:

Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the objectives.

GokarajuRangaraju Institute of Engineering & Technology M.Tech - Structural Engineering Academic Year: 2021- 2022 ROLLLIST

S.No	Reg. No	Name
1	21241D2001	ATKAPURAM PRASHANTH
2	21241D2002	BANDI SRI RAM GOPAL
3	21241D2003	CHALLA MADHAVI
4	21241D2004	PAMMI DIVYA
5	21241D2005	DUMMA UMESH KUMAR
6	21241D2006	K LATHASREE
7	21241D2007	MARIYALA VAISHNAVI
8	21241D2008	MAVOORI PRANAV
9	21241D2009	MITTAPALLI NAGA ASHWINI
10	21241D2010	RAVULA VENKATA SURAJ REDDY
11	21241D2011	REPATI MOHAN BABU
12	21241D2012	CHERUKU SANDHYA
13	21241D2013	SHAIK FEROZ
14	21241D2014	S K SAI CHANDRA
15	21241D2015	THOTA HARSHAVARDHAN
16	21241D2016	VARIKUPPULA LALITHA
17	21241D2017	YAMBA RAMA GNANENDRA SAI
18	21241D2018	YENUMALA DEVESH GOUD
19	21241D2019	S PRASHANTH KUMAR
20	21241D2020	BAVANDLAPELLI THARUN TEJA
21	21241D2021	G NITISH KUMAR

Signature of HOD

Signature of faculty

Date:

(Autonomous)

Structural Engineering

GUIDELINES TO STUDY THE COURSE/SUBJECT

Academic Year	:	2021-	-22				
Name of the Progra	m: M	.Tech		Year:	Ι	Semester: I	
Course	:AN	MSE	Course Coo	le: GR2	20D200	6	
Name of the faculty	: V	Nares	h Kumar Va	irma	Dept.:	Civil Engineerii	ng
Designation	: As	sistant	Professor				

Guidelines to study the course Computer-Oriented Numerical Methods in Engineering

This course is a study of mathematical techniques used to model engineering systems. It involves the development of mathematical models and the application of the computer to solve engineering problems using the following computational techniques: Taylor Series approximation, numerical differentiation, root-finding using bracketing and open methods, linear and polynomial curve fitting, solution methods for matrix equations, numerical integration, and the solution of differential equations.

Students should have the following prerequisites

- 1. Fundamentals of Matrices
- 2. Basics of Interpolation
- 3. Basics of Differentiation and
- 4. Basics of Integration

Where will this subject help?

1. To develop the skill of solving linear algebraic systems by direct and iteration methods.

- 2. To illustrate advanced matrix techniques in the determination of Eigen values and Eigen vectors of square matrix.
- 3. To analyze the performance of various interpolation technique and perform error analysis.
- 4. To compare various numerical differentiation and integration techniques.
- 5. To explain the various techniques to study Initial and Boundary value problems in ODE.
- 6. To solve a range of problems on applicable software.
- 7. To develop the skill of solving linear algebraic systems by direct and iteration methods.

Books/Material

S.No.	Text Books
1	M.K.Jain-S.R.K.Iyengar, R.K.Jain Numerical methods for scientific and
	engineering computations, Willey Eastern Limited, 1987
2	S.S.Sastry, Numerical methods.
3	Curtis I.Gerala, Applied numerical analysis, AddissonWasley published campus.

S.No.	Suggested / Reference Books
1	C.Chopra, Raymond P.Canal, Numerical methods for Engineers Stevan, Mc. Graw
	Hill book Company, 4th edition, 2002.
2	C.Xavier, C Language and Numerical methods, New age international publisher,
	2003.
3	Dr. M.Shanta Kumar, Computer based numerical analysis, Khanna Book
	publishers, New Delhi.

Course Design and Delivery System

- 1. The course syllabus is written into number of learning objectives and learning outcomes.
- 2. These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars and presentations, etc.,
- 3. Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- 4. The learning process will be carried out through assessment of knowledge, skills and attitude by various methods and the student will be given guidance to refer to the textbooks, reference books, journals etc.,

The faculty be able to -

- Understand the principles of learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, lesson and unit plan
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback system to students using various methods of assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone.

Signature of HOD

Signature of Faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE SCHEDULE

Academic Year : 2021-22

Name of the Program : M.Tech Year: I YearSemester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

The Schedule for the whole Course / Subject is:

		Duratio	Total No.	
S. No.	Description	From	То	of
				Periods
1	UNIT-1	47/44/24	10/12/21	1.4
1.	Curve Fitting	1//11/21	10/12/21	14
2.	UNIT-II Elements of Matrix Algebra	14/12/21	31/12/21	13
3.	UNIT-III Solution of Nonlinear Algebraic and Transcendental Equations	31/12/21	28/01/22	8
4.	UNIT-IV Numerical Differentiation & Integration	01/02/22	25/02/22	12
5.	UNIT-V Finite Difference schemes Computer Algorithms	16/11/21	08/12/21	9

Total No. of Instructional periods available for the course: 56 Hours / Periods

Signature of H.O.D

Signature of faculty Date:

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2021-22Name of the Program : M.TechYear: I YearSemester: ICourse/Subject :ANMSECourse CodeSubject :Ourse CodeCourse CodeName of the FacultyV Naresh Kumar VarmaDept.:Structural Engineering (Civil Engineering)

S. No.	Unit No	Date	Topics	Objectives & Outcomes Nos.	References(Text book, Journal)
1	Unit I	17-11-2021	Introduction to ANMSE	Cob1, CO1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
2	Unit I	19-11-2021	Error Analysis	Cob1, CO1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
3	Unit I	19-11-2021	Floating-Point Approximation of a Number	Cob1, CO1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
4	Unit I	23-11-2021	Loss of Significance and Error Propagation	Cob1, CO1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
5	Unit I	24-11-2021	Stability in Numerical Computation	Cob1, CO1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
6	Unit I	26-11-2021	Introduction to Interpolation	Cob1, CO1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
7	Unit I	26-11-2021	Linear & Higher Order Interpolation	Cob1, CO1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
8	Unit I	30-11-2021	Higher order Interpolation	Cob1, CO1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
9	Unit	01-12-2021	Lagrange Interpolation	Cob1, CO1	Numerical methods for

	Ι				scientific &Engg.
					computations by M. K.
					Jain & S.R.K Iyengar
				Cob1, CO1	Numerical methods for
10	Unit	03-12-2021	Hermite Interpolation		scientific &Engg.
10	Ι	05 12 2021	Thermite Interpolation		computations by M. K.
					Jain & S.R.K Iyengar
				Cob1, CO1	Numerical methods for
11	Unit	03-12-2021	Piecewise and Spline		scientific &Engg.
	Ι		Interpolation		computations by M. K.
					Jain & S.R.K Iyengar
	TT T		.	Cob1, CO1	Numerical methods for
12	Unit	07-12-2021	Interpolating polynomials		scientific &Engg.
	1		using finite differences		computations by M. K.
				C-11 CO1	Jain & S.K.K Tyengar
	I Init		Newtone Divided	Cobl, COl	Numerical methods for
13	T	08-12-2021	Difference Interpolation		scientific & Eligg.
	1		Difference interpolation		Lain & S R K Lyangar
				Coh1 CO1	Numerical methods for
	Unit			0001, 001	scientific & Engg
14	I	10-12-2021	Richardson's extrapolation		computations by M. K.
	-				Jain & S.R.K Ivengar
				Cob1, CO1	Numerical methods for
1.5	Unit	10 10 0001			scientific & Engg.
15	Ι	10-12-2021	Unit-I Problems		computations by M. K.
					Jain & S.R.K Iyengar
				Cob2, CO2	Numerical methods for
16	Unit	14-12-2021	Solutions of Linear		scientific &Engg.
10	II	14-12-2021	Equations - Direct Method		computations by M. K.
					Jain & S.R.K Iyengar
				Cob2, CO2	Numerical methods for
17	Unit	15-12-2021	Cramer's Rule		scientific &Engg.
- /	II	10 12 2021			computations by M. K.
					Jain & S.R.K Iyengar
	T T. */		Course Elimit di	Cob2, CO2	Numerical methods for
18	Unit	17-12-2021	Gauss - Elimination		scientific & Engg.
	11		Method		computations by M. K.
				Cabl COl	Jain & S.K.K Tyengar
	Unit		Gauss - Iordan	C002, C02	scientific & Enga
19	П	17-12-2021	Flimination		computations by M K
	11				Jain & S R K Ivengar
				Cob ₂ CO ₂	Numerical methods for
-	Unit		LU Decomposition		scientific & Engg
20	II	21-12-2021	Method		computations by M. K.
					Jain & S.R.K Iyengar
0.1	Unit	22, 12, 2021	Iterative Methods - Jacobi	Cob2, CO2	Numerical methods for
21	II	22-12-2021	Iteration method		scientific &Engg.

					computations by M. K. Jain & S.R.K Iyengar
22	Unit II	24-12-2021	Gauss - Siedel Iteration	Cob2, CO2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
23	Unit II	24-12-2021	Introduction to Eigen Values & Eigen Vectors	Cob2, CO2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
24	Unit II	28-12-2021	Jacobi method for symmetric matrices	Cob2, CO2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
25	Unit II	29-12-2021	Power Method, Inverse Power Method	Cob2, CO2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
26	Unit II	31-12-2021	Nearest Eigen Value by Power Method	Cob2, CO2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
27	Unit III	31-12-2021	Solution of Nonlinear Algebraic and Transcendental Equations	Cob3, CO3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
28	Unit III	04-01-2022	Bisection Method	Cob3, CO3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
29	Unit III	05-01-2022	Fixed-Point Iteration Method	Cob3, CO3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
30	Unit III	07-01-2022	Secant Method	Cob3, CO3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
31	Unit III	07-01-2022	Newton Method	Cob3, CO3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
32	Unit III	25-01-2022	Regula Falsi Methods	Cob3, CO3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
33	Unit III	28-01-2022	Rate of Convergences	Cob3, CO3	Numerical methods for scientific &Engg. computations by M. K.

					Jain & S.R.K Iyengar
34	Unit III	28-01-2022	Unconstrained Optimization	Cob3, CO3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
35	Unit IV	01-02-2022	Numerical Solution of Ordinary differential equations	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
36	Unit IV	02-02-2022	Numerical Integration	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
37	Unit IV	04-02-2022	Double integration using Trapezoidal method.	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
38	Unit IV	04-02-2022	Double integration using Simpson's method.	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
39	Unit IV	08-02-2022	Integration Methods Problem Solving	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
40	Unit IV	09-02-2022	Numerical Solution of Partial differential equations	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
41	Unit IV	11-02-2022	Euler's method – Backward Euler method	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
42	Unit IV	11-02-2022	Midpoint method – single step method	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
43	Unit IV	15-02-2022	Euler's Method Problem Solving	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
44	Unit IV	16-02-2022	Taylor's series method	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
45	Unit IV	18-02-2022	Taylor's series method	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar

46	Unit IV	18-02-2022	R-K Methods	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
47	Unit IV	22-02-2022	R-K Methods	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
48	Unit IV	23-02-2022	Boundary value problems by finite difference method	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
49	Unit IV	25-02-2022	Boundary value problems	Cob4, CO4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
50	Unit V	25-02-2022	Finite Difference schemes	Cob5, CO5	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
51	Unit V	02-03-2022	Implicitscheme	Cob5, CO5	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
52	Unit V	04-03-2022	Explicit scheme	Cob5, CO5	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
53	Unit V	04-03-2022	Computer Algorithms	Cob5, CO5	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
54	Unit V	08-03-2022	Numerical Solutions for Different Structural Problems	Cob5, CO5	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
55	Unit V	09-03-2022	Fuzzy Logic Neural Network.	Cob5, CO5	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar
56	Unit V	11-03-2022	Neural Network	Cob5, CO5	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22Name of the Program : M.TechYear: I YearSemester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Topics/Sub Topics	Date	No. of	Objectives	References	Blooms
		Periods	& Outcomes	(Text book, Journal)	Taxono
			No.		my level
		1	COb-1&	Numerical methods for	K1
Introduction to			CO-1	scientific &Engg.	
	17-11-2021			computations by M. K.	
				Jain & S.R.K Iyengar	
		1	<u>COL 1.0</u>		17.1
		I	COb-1&	Numerical methods for	KI
	10 11 2021		CO-1	scientific & Engg.	
Error Analysis	19-11-2021			computations by M. K.	
				Jain & S.R.K Iyengar	
		1	COb-1&	Numerical methods for	K1
Floating-Point		1	CO-1	scientific & Engg	111
Approximation of a	19-11-2021		001	computations by M K	
Number				Jain & S R K Ivengar	
				vani ce sittiti tjenga	
Loss of Significance		1	COb-1&	Numerical methods for	K2
and Frror	23-11-2021		CO-1	scientific &Engg.	
Propagation	25 11 2021			computations by M. K.	
				Jain & S.R.K Iyengar	
		1	COb-1&	Numerical methods for	K2
Stability in Numerical			CO-1	scientific &Engg.	
Computation	24-11-2021			computations by M. K.	
Computation				Jain & S.R.K Iyengar	
		1	COb-1&	Numerical methods for	K2
Introduction to			CO-1	scientific &Engg.	
Internolation	26-11-2021			computations by M. K.	
				Jain & S.R.K Iyengar	

Linear & Higher Order Interpolation	26-11-2021	1	COb-1& CO-1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Higher order Interpolation	30-11-2021	1	COb-1& CO-1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Lagrange Interpolation	01-12-2021	1	COb-1& CO-1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Hermite Interpolation	03-12-2021	1	COb-1& CO-1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Piecewise and Spline Interpolation	03-12-2021	1	COb-1& CO-1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Interpolating polynomials using finite differences	07-12-2021	1	COb-1& CO-1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Newtons Divided Difference Interpolation	08-12-2021		COb-1& CO-1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Richardson's extrapolation	10-12-2021		COb-1& CO-1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Unit-I Problems	10-12-2021		COb-1& CO-1	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3

Signature of HOD

Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Name of the Program : M.Tech Year: I YearSemester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Unit No. 2

Topics/Sub Topics	Date	No. of	Objectives	References	Blooms
		Periods	& Outcomes	(Text book, Journal)	Taxono
			No.	()	my level
Solutions of Linear Equations - Direct Method	14-12-2021	1	COb-2& CO-2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	KI
Cramer's Rule	15-12-2021	1	COb-2& CO-2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Gauss - Elimination Method	17-12-2021	1	COb-2& CO-2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Gauss - Jordan Elimination	17-12-2021	1	COb-2& CO-2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K2

LU Decomposition Method	21-12-2021	1	COb-2& CO-2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Iterative Methods - Jacobi Iteration method	22-12-2021	1	COb-2& CO-2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K3
Gauss - Siedel Iteration	24-12-2021	1	COb-2& CO-2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Introduction to Eigen Values & Eigen Vectors	24-12-2021	1	COb-2& CO-2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K3
Jacobi method for symmetric matrices	28-12-2021	1	COb-2& CO-2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K3
Power Method, Inverse Power Method	29-12-2021	1	COb-2& CO-2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K3
Nearest Eigen Value by Power Method	31-12-2021	1	COb-2& CO-2	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K3

Signature of HOD

Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Name of the Program : M.Tech Year: I YearSemester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Topics/Sub Topics	Date	No. of	Objectives	References	Blooms
		Periods	& Outcomes	(Text book, Journal)	Taxono
			No.		my level
Solution of Nonlinear Algebraic and Transcendental Equations	31-12-2021	1	COb-3& CO-3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К1
Bisection Method	04-01-2022	1	COb-3& CO-3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Fixed-Point Iteration Method	05-01-2022	1	COb-3& CO-3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Secant Method	07-01-2022	1	COb-3& CO-3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К2

Newton Method	07-01-2022	1	COb-3& CO-3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Regula Falsi Methods	25-01-2022	1	COb-3& CO-3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Rate of Convergences	28-01-2022	1	COb-3& CO-3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Unconstrained Optimization	28-01-2022	1	COb-3& CO-3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K4
Numerical Solution of Ordinary differential equations	01-02-2022	1	COb-3& CO-3	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3

Signature of HOD

Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Name of the Progr	am	: M.Tech	Year: I YearSemester: I		
Course/Subject	:	ANMSE	Course Code	: GR20D2006	

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Topics/Sub Topics	Date	No. of	Objectives &	References	Blooms
		Periods	Outcomes	(Text book, Journal)	Taxonom
			No.		y level
Numerical Integration	02-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Double integration using Trapezoidal method.	04-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Double integration using Simpson's method.	04-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K1
Integration Methods Problem Solving	08-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Numerical Solution of Partial differential equations	09-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К2

Euler's method – Backward Euler method	11-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Midpoint method – single step method	11-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Euler's Method Problem Solving	15-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Taylor's series method	16-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Taylor's series method	18-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
R-K Methods	18-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
R-K Methods	22-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Boundary value problems by finite difference method	23-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K4
Boundary value problems	25-02-2022	1	COb-4 & CO-4	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K4

Signature of HOD

Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Name of the Program : M.Tech Year: I YearSemester: I

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Unit No. 5

Topics/Sub Topics	Date	No. of	Objectives	References	Blooms
		Periods	& Outcomes	(Text book, Journal)	Taxono
			No.		my level
		1	COb-5&	Numerical methods	K3
			CO-5	for scientific & Engg.	
Finite Difference	25-02-2022			computations by M.	
schemes				K. Jain & S.R.K	
				Iyengar	
		1	COb-5&	Numerical methods	K3
			CO-5	for scientific & Engg.	
Implicitscheme	02-03-2022			computations by M.	
				K. Jain & S.R.K	
				Iyengar	
		1	COb-5&	Numerical methods	K3
Explicit scheme		_	CO-5	for scientific & Engg.	
	04-03-2022			computations by M.	
				K. Jain & S.R.K	
				Iyengar	
		1	COb-5&	Numerical methods	K2
Computer Algorithms	04-03-2022		CO-5	for scientific & Engg.	
				computations by M.	
				K. Jain & S.R.K	
				Iyengar	

Numerical Solutions for Different Structural Problems	08-03-2022	1	COb-5& CO-5	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	К3
Fuzzy Logic Neural Network.	09-03-2022	1	COb-5& CO-5	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K2
Neural Network	11-03-2022	1	COb-5& CO-5	Numerical methods for scientific &Engg. computations by M. K. Jain & S.R.K Iyengar	K2

Signature of HOD

Date:

Signature of faculty

Academic Year:2021-22Date: 11/17/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:1Lesson No:1Duration of Lesson:1 hrLesson Title:Introduction to ANMSE

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Introduction, Basic, Prerequisites, Mathematics

Assignment / Questions:

Academic Year: 2021-22Date: 11/19/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:2Duration of Lesson: 1 hrLesson Title: Error Analysis

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Error Analysis, decimal point

Assignment / Questions:

1.Represent 625.12546 in normalized floating-point representation

Academic Year:2021-22Date: 11/19/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:3Duration of Lesson: 1 hrLesson Title:Floating-Point Approximation of a Number

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Floating-Point Approximation of a Number, roundoff & Cutoff

Assignment / Questions:

1. Write about floating point form of anumber

Academic Year: 2021-22Date: 11/23/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:4Duration of Lesson: 1 hrLesson Title: Loss of Significance and Error Propagation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Loss of Significance and Error Propagation

Assignment / Questions:

1. Explain about Error Prapagation

Academic Year: 2021-22Date: 11/24/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaCourse Code: GR20D2006Department: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:5Duration of Lesson: 1 hrLesson Title: Stability in Numerical Computation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Stability in Numerical Computation, Max Error

Assignment / Questions:

1. Write about stability of a number

Academic Year:2021-22Date: 11/26/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:6Duration of Lesson: 1 hrLesson Title:Introduction to Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Introduction to Interpolation, Joining a curve

Assignment / Questions:

1. problems on interpolation

Academic Year: 2021-22Date: 11/26/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:7Duration of Lesson: 1 hrLesson Title: Linear & Higher Order Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Linear & Higher Order Interpolation and errors

Assignment / Questions:

1. problems on higher order interpolation

Academic Year:2021-22Date: 11/30/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:8Lesson No:8Duration of Lesson: 1 hrLesson Title:Higher order Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Higher order Interpolation and errors

Assignment / Questions:

1. problems on interpolation

Academic Year: 2021-22Date: 12/1/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaCourse Code: GR20D2006Department: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:9Duration of Lesson: 1 hrLesson Title: Lagrange Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Lagrange Interpolation and errors

Assignment / Questions:

1. problems on lagrange interpolation

Academic Year: 2021-22Date: 12/3/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Department: Structural Engineering (CIVIL)Lesson No:10Duration of Lesson: 1 hrLesson Title: Hermite Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Hermite Interpolation and errors

Assignment / Questions:

1. problems on hermite interpolation

Academic Year: 2021-22Date: 12/3/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaCourse Code: GR20D2006Department: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No: 11Duration of Lesson: 1 hrLesson Title: Piecewise and Spline Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Piecewise and Spline Interpolation and errors

Assignment / Questions:

1. problems on spline interpolation

Academic Year: 2021-22Date: 12/7/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Department: Structural Engineering (CIVIL)Duration of Lesson: 1 hrLesson No: 12Duration of Lesson: 1 hrLesson Title: Interpolating polynomials using finite differences

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Interpolating polynomials using finite differences and errors

Assignment / Questions:

1. problems using finite differences

Academic Year: 2021-22Date: 12/8/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaCourse in the faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Seignation: Assistant ProfessorLesson No: 13Duration of Lesson: 1 hrLesson Title: Newtons Divided Difference Interpolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Newtons Divided Difference Interpolation and errors

Assignment / Questions:

1. problems on finite difference interpolation

Academic Year: 2021-22Date: 12/10/2021Name of the Program : M.Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:14Duration of Lesson: 1 hrLesson Title: Richardson's extrapolation

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Richardson's extrapolation and errors

Assignment / Questions:

1. Write about richardson's extrapolation

Academic Year:2021-22Date: 12/10/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:15Duration of Lesson:1 hrLesson Title:Unit-I Problems

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

All interpolation methods and Doubts clearing

Assignment / Questions:

Academic Year:2021-22Date: 12/14/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:16Duration of Lesson:1 hrLesson Title:Solutions of Linear Equations - Direct Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Solutions of Linear Equations - Direct Method

Assignment / Questions:

1. problems od linear equations - direct method

Academic Year: 2021-22Date: 12/15/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaCourse Code: GR20D2006Department: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No: 17Duration of Lesson: 1 hrLesson Title: Cramer's RuleVarma

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Cramer's Rule, No of Unknowns, determinants

Assignment / Questions:

1. problems on cramer's rule

Academic Year:2021-22Date: 12/17/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:18Lesson No:18Duration of Lesson:1 hrLesson Title:Gauss - Elimination Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Gauss - Elimination Method, LDU--> U

Assignment / Questions:

1. problems on elimination method

Academic Year:2021-22Date: 12/17/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:19Duration of Lesson:1 hrLesson Title:Gauss - Jordan Elimination

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Gauss - Jordan Elimination, LDU--> D

Assignment / Questions:

1. problems on jordan elimination

Academic Year: 2021-22Date: 12/21/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No: 20Duration of Lesson: 1 hrLesson Title: LU Decomposition Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

LU Decomposition Method

Assignment / Questions:

1. problems on lu decomposition method

Academic Year: 2021-22Date: 12/22/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaCourse Code: GR20D2006Department: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:21Duration of Lesson: 1 hrLesson Title: Iterative Methods - Jacobi Iteration method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Iterative Methods - Jacobi Iteration method, iterations

Assignment / Questions:

1. problems on jacobi iteration method

Academic Year: 2021-22Date: 12/24/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:22Duration of Lesson: 1 hrLesson Title: Gauss - Siedel Iteration

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Gauss - Siedel Iteration, iterations

Assignment / Questions:

1. problems on gauss - siedel iteration

Academic Year: 2021-22Date: 12/24/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaCourse Code: GR20D2006Department: Structural Engineering (CIVIL)Semester: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:23Lesson Title: Introduction to Eigen Values & Eigen Vectors

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Introduction to Eigen Values & Eigen Vectors and its applications

Assignment / Questions:

1. problems on eigen values & eigen vectors

Academic Year: 2021-22Date: 12/28/2021Name of the Program : M.Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:24Lesson No:24Duration of Lesson: 1 hrLesson Title: Jacobi method for symmetric matrices

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Jacobi method for symmetric matrices, Matrix Properties

Assignment / Questions:

1. problems using symmetric matrices

Academic Year:2021-22Date: 12/29/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:25Lesson No:25Duration of Lesson:1 hrLesson Title:Power Method, Inverse Power Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Power Method, Inverse Power Method Uses

Assignment / Questions:

1. problems on inverse power method

Academic Year:2021-22Date: 12/31/2021Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:26Duration of Lesson:1 hrLesson Title:Nearest Eigen Value by Power Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Nearest Eigen Value by Power Method

Assignment / Questions:

1. problems on value by power method

Academic Year: 2021-22Date: 12/31/2021Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No: 27Duration of Lesson: 1 hrLesson Title: Solution of Nonlinear Algebraic and Transcendental Equations

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Solution of Nonlinear Algebraic and Transcendental Equations

Assignment / Questions:

1. problems on nonlinear algebraic and transcendental equations

Academic Year:2021-22Date: 1/4/2022Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:28Duration of Lesson:1 hrLesson Title:Bisection Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Bisection Method and Convergence

Assignment / Questions:

1. problems on bisection method

Academic Year:2021-22Date: 1/5/2022Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:29Lesson No:29Duration of Lesson: 1 hrLesson Title:Fixed-Point Iteration Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Fixed-Point Iteration Method and Convergence

Assignment / Questions:

1. problems on method

Academic Year:2021-22Date: 1/7/2022Name of the Program : M.Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:30Duration of Lesson: 1 hrLesson Title: Secant Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Secant Method and Convergence

Assignment / Questions:

1. problems on secant method

Academic Year: 2021-22Date: 1/7/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:31Duration of Lesson: 1 hrLesson Title: Newton Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Newton Method and Convergence

Assignment / Questions:

1. problems on newton method

Academic Year: 2021-22Date: 1/25/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Department: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No: 32Duration of Lesson: 1 hrLesson Title: Regula Falsi Methods

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Regula Falsi Methods and Convergence

Assignment / Questions:

1. problems on Regula Falsi methods

Academic Year: 2021-22Date: 1/28/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:33Lesson No:33Duration of Lesson: 1 hrLesson Title: Rate of Convergences

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Rate of Convergences and identifying best method

Assignment / Questions:

1. problems on convergences

Academic Year: 2021-22Date: 1/28/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Department: Structural Engineering (CIVIL)Semester: IDesignation: Assistant ProfessorLesson No:34Lesson Title: Unconstrained Optimization

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Unconstrained Optimization

Assignment / Questions:

1. problems on unconstrained optimization

Academic Year: 2021-22Date: 2/1/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Department: Structural Engineering (CIVIL)Juration of Lesson: 1 hrLesson No: 35Duration of Ordinary differential equations

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Numerical Solution of Ordinary differential equations

Assignment / Questions:

1. problems on ordinary differential equations

Academic Year: 2021-22Date: 2/2/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:36Lesson No:36Duration of Lesson: 1 hrLesson Title: Numerical Integration

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Numerical Integration, Area under the Curve

Assignment / Questions:

1. problems on integration

Academic Year: 2021-22Date: 2/4/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No: 37Duration of Lesson: 1 hrLesson Title: Double integration using Trapezoidal method.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Double integration using Trapezoidal method, approximations

Assignment / Questions:

1. integral problems using trapezoidal method.

Academic Year: 2021-22Date: 2/4/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No: 38Duration of Lesson: 1 hrLesson Title: Double integration using Simpson's method.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Double integration using Simpson's method, errors

Assignment / Questions:

1. integral problems simpson's method.

Academic Year: 2021-22Date: 2/8/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No: 39Duration of Lesson: 1 hrLesson Title: Integration Methods Problem Solving

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Integration Methods and their accuracy

Assignment / Questions:

Academic Year: 2021-22Date: 2/9/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No: 40Duration of Lesson: 1 hrLesson Title: Numerical Solution of Partial differential equations

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Numerical Solution of Partial differential equations

Assignment / Questions:

1. problems on of partial differential equations

Academic Year: 2021-22Date: 2/11/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:41Duration of Lesson: 1 hrLesson Title: Euler's method – Backward Euler method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Euler's method – Backward Euler method

Assignment / Questions:

1. problems on backward euler method

Academic Year:2021-22Date: 2/11/2022Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:42Lesson No:42Duration of Lesson:1 hrLesson Title:Midpoint method – single step method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Midpoint method - single step method

Assignment / Questions:

1. problems on single step method

Academic Year: 2021-22Date: 2/15/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:43Duration of Lesson: 1 hrLesson Title: Euler's Method Problem Solving

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Euler's Method and its accuracy

Assignment / Questions:

Academic Year: 2021-22Date: 2/16/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaCourse Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Juration of Lesson: 1 hrLesson No:44Duration of Lesson: 1 hrLesson Title: Taylor's series method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Taylor's series method

Assignment / Questions:

1. problems on taylor's series method

Academic Year: 2021-22Date: 2/18/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaCourse Code: GR20D2006Department: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:45Duration of Lesson: 1 hrLesson Title: Taylor's series method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Taylor's series method problems

Assignment / Questions:

1. problems on taylor's series method

Academic Year: 2021-22Date: 2/18/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:46Lesson No:46Duration of Lesson: 1 hrLesson Title: R-K MethodsLesson No: 40

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

R-K Methods Ist order and 2nd Order

Assignment / Questions:

1. problems on R-K methods

Academic Year: 2021-22Date: 2/22/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:47Lesson No:47Duration of Lesson: 1 hrLesson Title: R-K MethodsLesson No:40

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

R-K Methods 3rd Order and 4th Order

Assignment / Questions:

1. problems on R-K methods

Academic Year: 2021-22Date: 2/23/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Department: Structural Engineering (CIVIL)Duration of Lesson: 1 hrLesson No:48Duration of Lesson: 1 hrLesson Title: Boundary value problems by finite difference method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Boundary value problems by finite difference method

Assignment / Questions:

1. problems on problems by finite difference method

Academic Year: 2021-22Date: 2/25/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:49Duration of Lesson: 1 hrLesson Title: Boundary value problems

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Problem Solving

Assignment / Questions:

1. boundary value problems

Academic Year:2021-22Date: 2/25/2022Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:50Lesson No:50Duration of Lesson:1 hrLesson Title:Finite Difference schemes

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Finite Difference schemes methods

Assignment / Questions:

1. problems on finite difference schemes

Academic Year: 2021-22Date: 3/2/2022Name of the Program : M.Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:51Lesson Title: Implicit schemeDuration of Lesson: 1 hr

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Implicit scheme, uses

Assignment / Questions:

1. problems on implicit scheme

Academic Year:2021-22Date: 3/4/2022Name of the Program :M.Tech.Year :ISemester: ICourse/Subject:ANMSECourse Code: GR20D2006Name of the Faculty:Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:52Lesson Title:Explicit schemeDuration of Lesson:1 hr

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Explicit scheme, uses

Assignment / Questions:

1. problems on explicit scheme

Academic Year: 2021-22Date: 3/4/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:53Duration of Lesson: 1 hrLesson Title: Computer Algorithms

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Computer Algorithms, writing basic mathematical programs

Assignment / Questions:

1. write an algorithm to find the highest number of three

Academic Year: 2021-22Date: 3/8/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:54Duration of Lesson: 1 hrLesson Title: Numerical Solutions for Different Structural Problems

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Numerical Solutions for Different Structural Problems

Assignment / Questions:

1. Explain about numerical solutions for different structural problems

Academic Year: 2021-22Date: 3/9/2022Name of the Program : M. Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:55Duration of Lesson: 1 hrLesson Title: Fuzzy Logic Neural Network.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Fuzzy Logic and its Applications

Assignment / Questions:

1. Write about fuzzy logic and its applications

Academic Year: 2021-22Date: 3/11/2022Name of the Program : M.Tech.Year : ISemester: ICourse/Subject: ANMSECourse Code: GR20D2006Name of the Faculty: Mr. V Naresh Kumar VarmaDepartment: Structural Engineering (CIVIL)Designation: Assistant ProfessorLesson No:56Duration of Lesson: 1 hrLesson Title: Neural Network

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

TEACHING AIDS :White Board, Marker, Scientific Calculator

TEACHING POINTS :

Neural Network and its Applications

Assignment / Questions:

1. Write about neural networks and its applications

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program : M.Te	ech Year: I Year Seme	Year: I YearSemester: I	
Course/Subject : ANMSE	Course Code	: GR20D2006	
Name of the Faculty :	V Naresh Kumar Varma		

Dept.: Structural Engineering (Civil Engineering)

Assignment – 1 Questions

1. Calculate the maximum absolute error by performing four iterations of the Gauss-Seidel method for solving the system of given equations by comparing it with the exact solution.

$$4x+2z = 6$$

$$5y + 2z = -3$$

$$5x+4y + 10z = 11$$

2) Solve the system of equations by Gauss Elimination Method.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program : M.Tech		ch Year: I YearSemester: I		
Course/Subject	: AN	MSE	Course Code	: GR20D2006
Name of the Facu	ılty	:	V Naresh Kumar Varma	

Dept.: Structural Engineering (Civil Engineering)

Assignment – 2 Questions

1) Estimate the population for the year 1995 from the following data using Newton's forward difference interpolation and Newton's backward difference interpolation.

Year	1921	1931	1941	1951	1961
Population(in	46	66	81	98	101
thousands)					

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Prog	gram : M.Tech	Year: I YearSemester: I		
Course/Subject	: ANMSE	Course Code	: GR20D2006	

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Assignment – 3 Questions

2) Derive the formulas for the first derivative of y = f(x) of $O(h^2)$ using forward difference approximations and backward difference approximations. Using these estimate $f'(\frac{\pi}{4})$, with $h = \frac{\pi}{12}$, when $f(x) = \sin x$. Obtain the bounds in truncation error and compare with exact solution.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program : M.Tech		Year: I YearSemester: I	
Course/Subject : AN	MSE	Course Code	: GR20D2006
Name of the Faculty	: V Na	aresh Kumar Varma	a
Dept.: Structural Engine	eering (Civil	Engineering)	

Assignment – 4 Questions

1. Explain the procedure to evaluate any given function using Simpson's (¹/₃)rd rule and also evaluate $\int_0^1 \frac{1}{1+X} dx$ using Simpson's 3/8 rule.

2. Give $du/dt=t^2 + u^2$, and u(0)=1, obtain Taylor Series for u(t) obtained from first two non-zero terms and hence Compute u(1).

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program : M.Tech	Year: I YearSemester: I			
Course/Subject : ANMSE	Course Code	: GR20D2006		
Name of the Faculty : V Na	aresh Kumar Varm	a		
Dept.: Structural Engineering (Civil Engineering)				

Assignment – 5 Questions

1. Solve the initial value problem $u'= -2tu^2$ with u(0)=1 and h=0.2 on the interval [0, 0.4]. Use fourth order classical Runge Kutta method. Compare with exact solution.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program : M.Tech		Year: I YearSemester: I		
Course/Subject	: ANMSE	Course Code	: GR20D2006	

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Tutorial – 1 Questions

1. Determine the largest Eigen value in modulus and corresponding Eigen vectors of matrix

$$\mathbf{A} = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$$

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program : M.Tech	Year: I YearSemester: I
------------------------------	-------------------------

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Tutorial – 2 Questions

1. Using Lagrange's method, find the polynomial f(x) and hence find f(2).

Х	1	3	4
у	-3	0	30

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program : M.Tech	Year: I YearSemester: I			
Course/Subject : ANMSE	Course Code	: GR20D2006		
Name of the Faculty : V N	Naresh Kumar Varm	a		
Dept.: Structural Engineering (Civil Engineering)				

Tutorial – 3 Questions

1. Give $du/dt=t^2 + u^2$, and u(0)=1, obtain Taylor Series for u(t) obtained from first two non-zero terms and hence Compute u(1).

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program : M.Tech		M.Tech	h Year: I YearSemester: I		
Course/Subject	: ANM	ISE	Course Code	e :	GR20D2006
Name of the Facu	ilty	: V Na	resh Kumar V	arma	

Dept.: Structural Engineering (Civil Engineering)

Tutorial – 4 Questions

1. Find the Jacobian matrix for the system of equations

$$\begin{split} F_1(x,\,y) &= x^2 + y^2 - x = 0 \\ F_2(x,\,y) &= x^2 - y^2 - x = 0 \end{split}$$

2. Evaluate $\int_0^{\pi/2} \cos(x) dx$ by using trapezoidal rule taking 6 intervals.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

ASSIGNMENTS / TUTORIALS

Academic Year : 2021-22

Name of the Program : M.TechYear: I YearSemester: ICourse/Subject: ANMSECourse Code: GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Tutorial – 5 Questions

1. Solve the initial value problem $u'=-2tu^2$ with u(0)=1 and h=0.2 on the

interval [0, 0.4] using Backward Euler Method

EVALUATION STRATEGY

Academic Year : 2021-22

Name of the Program :	M.Tech	Year: I YearSemester: II	
Course/Subject :	ANMSE	Course Code	: GR20D2006
Name of the Faculty	: V Na	resh Kumar Varma	l

Dept.: Structural Engineering (Civil Engineering)

1. TARGET:

- a) Percentage for pass: 100%
- b) Percentage of class: 100%

First class with distinction	21
First class	21
Pass class	-
Total strength	21

2. COURSE PLAN & CONTENT DELIVERY

• 56 Theory classes held for detailed demonstration of Syllabus and for analyzing real time problems in the class.

3. METHOD OF EVALUATION

- 3.1 Continuous Assessment Examinations (CAE-I, CAE-II)
- 3.2
 Assignments
- 3.4 🗆 Quiz
- 3.5 🗆 Semester/End Examination
- 3.6 🗆 Others

GokarajuRangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

MAPPING

GR20D2006 / ANMSE		Course Outcomes			
Course Objectives	1	2	3	4	5
1	Х				
2		Х			
3			X		
4				Х	
5					Х

Assessments

1. Assignment 2. Internal Examination 3. External Examination

4. Practical Projects 5. Viva

GR20D2006 / ANMSE	Course Outcomes				
Assessments	1	2	3	4	5
1	X	Х	Х	X	X
2	X	Х	Х	X	Х
3	X	Х	Х	X	X
4					
5					

GR20D2006 / ANMSE	Course Objectives				
Assessments	1	2	3	4	5
1	Х	X	Х	X	Х
2	X	X	Х	X	X
3	X	X	X	X	Х
4					
5					

GR20D2006 / ANMSE							
COs/POs	Α	В	с	d	e	f	
1.	Н			М	Н	М	
2.	Η	М		М			
3.	Η	М		М			
4.	Н	М		М			
5.	Н	М		М			

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

RUBRICS FOR COURSE

Academic Year : 2021-22

Name of the Program : M.TechYear: I YearSemester: IICourse/Subject : ANMSECourse Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

		Beginning	Developing	Reflecting	Accomplished	Exemplary	Score
				Development			
Name of the	Performance	1	2	3	4	5	
Student	Criteria						
	Level of knowledge on illustrating the fundamental concepts of matrices and its properties	Low Level	Able to understand	Able to understand and explain	Full Knowledge	Analyzing and application of knowledge	5
21241A02007	Level of knowledge on interpolation, differentiation and integration	Low Level	Able to understand	Able to understand and explain	Full Knowledge	Analyzing and application of knowledge	4
	Level of knowledge on initial value problems and boundary value problems	Low Level	Able to understand	Able to understand and explain	Full Knowledge	Analyzing and application of knowledge	3

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE COMPLETION STATUS

Academic Year : 2021-22

Name of the Program : M.Tech Year: I YearSemester: II

Course/Subject : ANMSE Course Code : GR20D2006

Name of the Faculty : V Naresh Kumar Varma

Dept.: Structural Engineering (Civil Engineering)

Actual Date of Completion & Remarks, if any

Units	Remarks	Objectives Achieved	Outcomes Achieved
Unit I	10-12-2021 Unit covered on time	1	1
Unit II	31-12-2021 Unit covered on time	2	2
Unit III	04-02-2022 Unit delayed by one week	3	3
Unit IV	25-02-2022 Unit covered on time	4	4
Unit V	11-03-2022 Unit covered on time	5	5

Signature of HOD

Signature of faculty

Date: Date: Date: Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous) Department of Civil Engineering (Structural Engineering) ANALYTICAL AND NUMERICAL METHODS FOR STRUCTURAL ENGINEERING [GR20D5006]

Exam: Mid-I. Time: 15 minutes Year & Sem: I M.Tech. I Sem. Date: 08-02-2022 PART – A Five Multiple Choice Questions. Each Question carries 1/2 mark $10 \text{ x} \frac{1}{2} = 5 \text{ marks}$ 1. Represent 625.12546 in normalized floating-point representation. CO1, BL2 1 **A.** $(-1)^0 \ge 62.512546 \ge 10^1$ **C.** $(-1)^0 \ge 0.62512546 \ge 10^3$ **B.** $(-1)^0 \ge 6.2512546 \ge 10^2$ **D.** $(-1)^0 \ge 625.12546 \ge 10^0$ 2. The exponent e is limited to a range m < e < M then if some computed number has an exponent e < m, this can be termed as **CO1, BL2** ſ 1 **A.** Memory Underflow C. NaN **B.** Memory Overflow **D.** None of the mentioned 3. Error is equal to **CO2, BL1** 1 Γ **A.** Distance between the data points **C.** Half the distance between the data **B.** Square of the distance between the points **D.** None of the mentioned data points 4. Which of the following method uses determinants to solve systems of equations that have the same number of equations as variables? CO2, BL1 Γ 1 **A.** Gauss Elimination Method **C.** Triangulation Method **B.** Gauss Jordan Elimination **D.** Cramer's rule 5. A transcendental equation may have _______depending on the form of f (x). CO3, BL2[] A. One root **C.** Infinite number of roots **D.** A or B or C **B.** No root 6. Gauss Siedel iteration method is also known as method of displacements.CO2, BL1[] **A.** Successive **C.** Simultaneous **B.** Consecutive **D.** None of the mentioned 7. In the Gauss Elimination method for solving a system of linear algebraic equations, triangularization **CO3**, **BL2** leads to matrix. Γ 1 A. Diagonal **C.** Upper Triangular **B.** Lower Triangular **D.** Identity ______ error is a measure of the error in relation to the size of the true value. CO3, BL1[] 8. A. True **C.** Percentage **B.** Relative **D.** Absolute 9. The determinant of matrix contains either a row of zeros or a column of zeros is .CO2, BL2 C. Two A. One **B.** Three **D.** Zero **10.** The line is tangent to the parabola and intersects the parabola at exactly one point then the system has how many solution/s? **CO1, BL2** Γ 1 A. One **B.** Three C. Two **D.** Zero

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous)

Department of Civil Engineering (Structural Engineering) ANALYTICAL AND NUMERICAL METHODS FOR STRUCTURAL ENGINEERING [GR20D5006]

Exam: Mid-I.						Time: 75 minutes
Year & Sem: I M.Tech. I Sem	l.		PART – B	5		Date: 08-02-2022
Internal Choice Three Ques	tions. Eacl	h Questior	n carries 5	marks		3 x 5 = 15 marks
1. (a) Explain about Floa	CO1, BL2					
(b)Define (i) Absolute	CO1, BL1					
OR 2. (a) Using Lagrange's method, find the polynomial $f(x)$ and hence find $f(5)$.						CO1, BL3
	x	1	3	4	6	
	f	-3	0	30	132	

(**b**) Find f(x) and compute f(0.3) for the data

X	0	1	3	4
f	1	3	49	129

using Newton's divided difference formula.

3. Solve the following system by Gauss Seidel Iteration Method. Perform 4 iterations. CO2, BL4

$$10x - 5y - 2z = 3$$

 $4x - 10y + 3z = -3$
 $x + 6y + 10z = -3$

OR

- 4. Solve the following system by Gauss Elimination method.
 - 83x + 11y 4z = 957x + 52y + 13z = 1043x + 3Y + 29z = 71

CO1, **BL3**

CO2, BL4

5. Determine the approximate root of the equation

CO3, BL5

$$2x^6 - 5x^4 + 2 = 0$$

in the interval [0, 1] after performing six iterations in the Bisection method.

OR

6. Determine the roots of the following equation using Fixed point Iteration method after performing six

iterations

CO3, BL5

$$x^2 - 2x - 5 = 0$$

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous)

Department of Civil Engineering (Structural Engineering) ANALYTICAL AND NUMERICAL METHODS FOR STRUCTURAL ENGINEERING [GR20D5006]

Exam:Mid-II.	Time: 15 minutes
Year & Sem: I M.Tech.I Sem.	Date:15-03-2022
PART – A Five Multiple Choice Questions. Each Question carries ¹ /2mark	10 x ¹ / ₂ = 5marks
1. An example of an algebraic equation is CO3, BL2 A. $tan x = e^x$ C. $x^3 - 5x + 3 = 0$	= 0
 <i>B.</i> x = logx <i>D.</i> None 2. Which of the following methods has linear rateofconvergence? CO3, BL2 A. Regularfalse B. Bisection D. None 	[] phson
3. The two initial values to find roots of the equation $x^3 - x - 3 = 0$ in bisection A. (-1, 0) B. (1, 2) C. (-2, 1) D. (1, 0)	nmethod are[]
4. If $y = -\cos x$, then $y''' = $ CO4, BL4	[]
A. $sin x$ C $cos x$ B $sin x$ D. $cos x$ 5. if $f(x) = x^{\pi}$, then $f(1) =$ CO4, BL4 A. 22 (C. 22 ($\pi x \sqrt{57}$)	[]
A. $22/7$ C. $22/7 \times 10^{-10}$ B. $7/22$ D. $7/22 \times 15/7$ 6. Evaluate the integral of $dx / (x + 2)$ from -6 to -10. CO4, BL5 A. $21/2$ C. $ln 3$	[]
B. $1/2$ D. $ln 2$ 7. Evaluate the integral of $sin^5 x dx$ if the lower limit is 0 and the upper limit is π/A .A. 0.233B. 0.533D. 0.433	'2? co4,bl5 []
 8. When an algorithm is written in the form of a programming language, it becomes A. Flowchart B. Program C. Pseudo code D. Syntax 	s aCO5,BL2 []
9. Algorithms can be represented as CO5,BL2 A. pseudocodes C. programs D. flucture D. flucture	[]
B. flowchartsD. all the above10. Pseudocode is used forCO5,BL2A. To write program stepsC. Denoting proB. For coding the programD. None of the	[] ogram flow above

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous)

Department of Civil Engineering (Structural Engineering) ANALYTICAL AND NUMERICAL METHODS FOR STRUCTURAL ENGINEERING [GR20D5006]

Exam:Mid-II.

Time: 75 minutes

Year & Sem: I M.Tech.I Sem.

Date:15-03-2022

PART – B

Internal Choice Three Questions. Each Question carries5marks3 x 5 = 15 marks

1) Determine the root of the equation $cosx-xe^x = 0$ by the method of Newton Raphson's method with initial assumption of $x_0=1$. Perform at least 6 iterations. CO3, BL4

OR

- 2) Determine real root of the equation f (x) = x³ 2x 5 = 0 by method of False position. Perform at least 6 iterations.
 CO3, BL4
- 3) (a) Evaluate the double integral using the Simpson's rule with foursubintervals

$$\int_{1}^{5} \left(\int_{1}^{5} \frac{dx}{(x^{2} + y^{2})^{1/2}} \right) dy$$

CO4, BL5

(b) Given the following values of $f(x) = x^4$. Determine

f'(0.8) & f''(0.8) using quadratic interpolation.

CO4.	BL4
~~.,	

x	0.4	0.6	0.8
f(x)	0.0256	0.1296	0.4096

OR

4) Solve the initial value problem $u^{l} = -2tu^{2}$ with u(0) = 1 and h = 0.2 on the interval

[0, 0.4]. Use fourth order classical Runge Kutta method. Compare with exactsolution. **CO4, BL5**

Use the Finite Difference method to approximate the solution of the boundary valueproblem
 CO5, BL4

"(x) - 2
$$y(x) = 0$$
, $y(0) = 1.2$, $y(1.0) = 0.9$, $h = 0.25$

- OR
- Define Algorithm, Fuzzy Logic and Neural Networks. List out the applications of Fuzzy Logic and Neural Networks in CivilEngineering.

CO5, BL1

y

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Roll No	Mid-I	Mid-II	Avg	Assesment	Attendance	Total
21241D2001	18	13	16	4	4	24
21241D2002	17	18	18	5	4	27
21241D2003	17	16	17	5	5	27
21241D2004	13	17	15	5	4	24
21241D2005	16	18	17	5	5	27
21241D2006	17	18	18	5	5	28
21241D2007	16	18	17	5	5	27
21241D2008	14	12	13	5	4	22
21241D2009	16	19	18	5	5	28
21241D2010	14	15	15	5	4	24
21241D2011	14	18	16	5	5	26
21241D2012	14	14	14	5	4	23
21241D2013	9	10	10	5	5	20
21241D2014	17	17	17	5	5	27
21241D2015	16	13	15	5	5	25
21241D2016	15	19	17	5	5	27
21241D2017	9	11	10	5	5	20
21241D2018	16	14	15	5	4	24
21241D2019	AB	AB	AB	3	4	7
21241D2020	7	10	9	3	4	16
21241D2021	13	11	12	5	4	21

ANMSE INTERNAL MARKS